web-dev-qa-db-fra.com

ggplot avec 2 axes y de chaque côté et différentes échelles

Je dois tracer un graphique à barres illustrant les nombres et un graphique à courbes indiquant le taux dans un graphique. Je peux les faire séparément, mais lorsque je les assemble, je redimensionne la première couche (c'est-à-dire le geom_bar). est recouvert par la deuxième couche (c'est-à-dire le geom_line).

Puis-je déplacer l'axe du geom_line vers la droite?

202
lokheart

Parfois, un client veut deux échelles y. Leur donner le discours "imparfait" est souvent inutile. Mais j'aime bien l'insistance de ggplot2 à faire les choses correctement. Je suis sûr que ggplot informe en fait l'utilisateur moyen des techniques de visualisation appropriées.

Peut-être que vous pouvez utiliser faceting et scale free pour comparer les deux séries de données? - par exemple. regardez ici: https://github.com/hadley/ggplot2/wiki/Align-two-plots-on-a-page

99
Andreas

Ce n'est pas possible dans ggplot2 parce que je pense que les parcelles avec des échelles y distinctes (et non des échelles y qui sont des transformations les unes des autres) sont fondamentalement défectueuses. Quelques problèmes:

  • Ils ne sont pas inversibles: vous ne pouvez pas les mapper de manière unique sur un point de l’espace de données avec un point de l’espace graphique.

  • Ils sont relativement difficiles à lire correctement par rapport aux autres options. Voir ne étude sur les graphiques de données à double échelle par Petra Isenberg, Anastasia Bezerianos, Pierre Dragicevic et Jean-Daniel Fekete pour plus de détails.

  • Ils sont facilement manipulables pour tromper: il n’existe pas de moyen unique de spécifier les échelles relatives des axes, ce qui les laisse ouverts à la manipulation. Deux exemples du blog Junkcharts: n , deux

  • Ils sont arbitraires: pourquoi n’avoir que 2 échelles, pas 3, 4 ou 10?

Vous voudrez peut-être aussi lire la longue discussion de Stephen Few sur le sujet Les axes à double échelle dans les graphiques sont-ils jamais la meilleure solution? .

133
hadley

À partir de ggplot2 2.2.0, vous pouvez ajouter un axe secondaire comme celui-ci (tiré de l'annonce annonce de ggplot2 2.2. ):

ggplot(mpg, aes(displ, hwy)) + 
  geom_point() + 
  scale_y_continuous(
    "mpg (US)", 
    sec.axis = sec_axis(~ . * 1.20, name = "mpg (UK)")
  )

enter image description here

102
tstenner

En prenant les réponses ci-dessus et quelques ajustements (et pour ce que cela vaut), voici une façon d'atteindre deux échelles via sec_axis:

Supposons un ensemble de données simple (et purement fictif) dt: pendant cinq jours, il enregistre le nombre d'interruptions par rapport à la productivité:

        when numinter prod
1 2018-03-20        1 0.95
2 2018-03-21        5 0.50
3 2018-03-23        4 0.70
4 2018-03-24        3 0.75
5 2018-03-25        4 0.60

(les plages des deux colonnes diffèrent d'environ le facteur 5).

Le code suivant va dessiner les deux séries qu’ils utilisent jusqu’à l’axe des ordonnées:

ggplot() + 
  geom_bar(mapping = aes(x = dt$when, y = dt$numinter), stat = "identity", fill = "grey") +
  geom_line(mapping = aes(x = dt$when, y = dt$prod*5), size = 2, color = "blue") + 
  scale_x_date(name = "Day", labels = NULL) +
  scale_y_continuous(name = "Interruptions/day", 
    sec.axis = sec_axis(~./5, name = "Productivity % of best", 
      labels = function(b) { paste0(round(b * 100, 0), "%")})) + 
  theme(
      axis.title.y = element_text(color = "grey"),
      axis.title.y.right = element_text(color = "blue"))

Voici le résultat (code ci-dessus + quelques ajustements de couleurs):

two scales in one ggplot2

Le point (hormis l'utilisation de sec_axis lors de la spécification de l'échelle y est de multiplier chaque valeur par la deuxième série de données avec 5 lors de la spécification de la série. Afin d’obtenir les libellés exacts dans la définition de sec_axis, il faut ensuite diviser par 5 (et mettre en forme). Un élément crucial du code ci-dessus est donc vraiment *5 dans la ligne geom_line et ~./5 dans la sec_axis (une formule divisant la valeur actuelle . par 5).

En comparaison (je ne veux pas juger les approches ici), voici à quoi ressemblent deux graphiques superposés:

two charts above one another

Vous pouvez juger par vous-même lequel des messages transmet le mieux le message ("Ne dérangez pas les gens au travail!"). Je suppose que c'est une bonne façon de décider.

Le code complet pour les deux images (ce n'est pas plus que ce qui est décrit ci-dessus, il est juste complet et prêt à fonctionner) est ici: https://Gist.github.com/sebastianrothbucher/de847063f32fdff02c83b75f59c36a7d une explication plus détaillée ici : https://sebastianrothbucher.github.io/datascience/r/visualization/ggplot/2018/03/24/two-scales-ggplot-r.html

29

La clé de voûte technique de la solution de ce problème a été fournie par Kohske il y a environ 3 ans [ KOHSKE ]. Le sujet et les aspects techniques de sa solution ont été discutés à plusieurs reprises ici sur Stackoverflow [IDs: 18989001, 29235405, 21026598]. Je ne fournirai donc qu'une variante spécifique et quelques explications, en utilisant les solutions ci-dessus.

Supposons que nous ayons des données y1 dans le groupe G1 auxquelles certaines données y2 dans le groupe G2 est lié d’une certaine manière, par exemple gamme/échelle transformée ou avec du bruit ajouté. Donc, on veut tracer les données ensemble sur un tracé avec l’échelle de y1 à gauche et de y2 à droite.

  df <- data.frame(item=LETTERS[1:n],  y1=c(-0.8684, 4.2242, -0.3181, 0.5797, -0.4875), y2=c(-5.719, 205.184, 4.781, 41.952, 9.911 )) # made up!

> df
  item      y1         y2
1    A -0.8684 -19.154567
2    B  4.2242 219.092499
3    C -0.3181  18.849686
4    D  0.5797  46.945161
5    E -0.4875  -4.721973

Si nous traçons maintenant nos données avec quelque chose comme

ggplot(data=df, aes(label=item)) +
  theme_bw() + 
  geom_segment(aes(x='G1', xend='G2', y=y1, yend=y2), color='grey')+
  geom_text(aes(x='G1', y=y1), color='blue') +
  geom_text(aes(x='G2', y=y2), color='red') +
  theme(legend.position='none', panel.grid=element_blank())

il ne s'aligne pas bien car la plus petite échelle y1 est évidemment réduite par une plus grande échelle y2 .

Le défi consiste à tracer techniquement les deux ensembles de données par rapport à la première échelle y1 mais reporte la seconde sur un axe secondaire avec des étiquettes montrant l’échelle originale y2 .

Nous construisons donc une première fonction d'assistance CalcFudgeAxis qui calcule et collecte les caractéristiques du nouvel axe à afficher. La fonction peut être modifiée selon votre préférence (celle-ci ne fait que mapper y2 sur la plage de y1 ).

CalcFudgeAxis = function( y1, y2=y1) {
  Cast2To1 = function(x) ((ylim1[2]-ylim1[1])/(ylim2[2]-ylim2[1])*x) # x gets mapped to range of ylim2
  ylim1 <- c(min(y1),max(y1))
  ylim2 <- c(min(y2),max(y2))    
  yf <- Cast2To1(y2)
  labelsyf <- pretty(y2)  
  return(list(
    yf=yf,
    labels=labelsyf,
    breaks=Cast2To1(labelsyf)
  ))
}

ce qui en rapporte:

> FudgeAxis <- CalcFudgeAxis( df$y1, df$y2 )

> FudgeAxis
$yf
[1] -0.4094344  4.6831656  0.4029175  1.0034664 -0.1009335

$labels
[1] -50   0  50 100 150 200 250

$breaks
[1] -1.068764  0.000000  1.068764  2.137529  3.206293  4.275058  5.343822


> cbind(df, FudgeAxis$yf)
  item      y1         y2 FudgeAxis$yf
1    A -0.8684 -19.154567   -0.4094344
2    B  4.2242 219.092499    4.6831656
3    C -0.3181  18.849686    0.4029175
4    D  0.5797  46.945161    1.0034664
5    E -0.4875  -4.721973   -0.1009335

Maintenant, j'ai intégré la solution de Kohske dans la deuxième fonction d'assistance PlotWithFudgeAxis (dans laquelle nous jetons les objets ggplot et helper du nouvel axe ):

library(gtable)
library(grid)

PlotWithFudgeAxis = function( plot1, FudgeAxis) {
  # based on: https://rpubs.com/kohske/dual_axis_in_ggplot2
  plot2 <- plot1 + with(FudgeAxis, scale_y_continuous( breaks=breaks, labels=labels))

  #extract gtable
  g1<-ggplot_gtable(ggplot_build(plot1))
  g2<-ggplot_gtable(ggplot_build(plot2))

  #overlap the panel of the 2nd plot on that of the 1st plot
  pp<-c(subset(g1$layout, name=="panel", se=t:r))
  g<-gtable_add_grob(g1, g2$grobs[[which(g2$layout$name=="panel")]], pp$t, pp$l, pp$b,pp$l)

  ia <- which(g2$layout$name == "axis-l")
  ga <- g2$grobs[[ia]]
  ax <- ga$children[[2]]
  ax$widths <- rev(ax$widths)
  ax$grobs <- rev(ax$grobs)
  ax$grobs[[1]]$x <- ax$grobs[[1]]$x - unit(1, "npc") + unit(0.15, "cm")
  g <- gtable_add_cols(g, g2$widths[g2$layout[ia, ]$l], length(g$widths) - 1)
  g <- gtable_add_grob(g, ax, pp$t, length(g$widths) - 1, pp$b)

  grid.draw(g)
}

Maintenant, tout peut être mis ensemble: Le code ci-dessous montre comment la solution proposée pourrait être utilisée dans un environnement quotidien . L'appel de tracé ne trace plus les données d'origine y2 , mais une version clonée yf (conservée à l'intérieur de l'objet d'assistance précalculé FudgeAxis ), qui exécute l'échelle de y1 . L'objet ggplot d'origine est ensuite manipulé avec de la fonction d'assistance de Kohske PlotWithFudgeAxis pour ajouter un deuxième axe en préservant les échelles de y2 . Il trace également l'intrigue manipulée.

FudgeAxis <- CalcFudgeAxis( df$y1, df$y2 )

tmpPlot <- ggplot(data=df, aes(label=item)) +
      theme_bw() + 
      geom_segment(aes(x='G1', xend='G2', y=y1, yend=FudgeAxis$yf), color='grey')+
      geom_text(aes(x='G1', y=y1), color='blue') +
      geom_text(aes(x='G2', y=FudgeAxis$yf), color='red') +
      theme(legend.position='none', panel.grid=element_blank())

PlotWithFudgeAxis(tmpPlot, FudgeAxis)

Ceci trace maintenant comme souhaité avec deux axes, y1 à gauche et y2 à gauche à droite

2 axes

La solution ci-dessus est, pour le dire directement, un hack limité et fragile. En jouant avec le noyau ggplot, il lancera des avertissements selon lesquels nous échangerions des échelles a posteriori, etc. Il doit être manipulé avec précaution et peut produire un comportement indésirable dans un autre contexte. En outre, il peut être nécessaire de manipuler les fonctions d'assistance pour obtenir la disposition souhaitée. Le placement de la légende pose un tel problème (elle serait placée entre le panneau et le nouvel axe; c'est pourquoi je l'ai laissée tomber). La mise à l'échelle/l'alignement de l'axe 2 est également un peu difficile: le code ci-dessus fonctionne bien lorsque les deux échelles contiennent le "0", sinon un axe est décalé. Donc, définitivement avec quelques possibilités d'amélioration ...

Si vous souhaitez enregistrer la photo, vous devez envelopper l'appel dans l'appareil ouvert/fermé:

png(...)
PlotWithFudgeAxis(tmpPlot, FudgeAxis)
dev.off()
13
C.K

Il existe des axes duels y communs, par exemple, le climatographe , qui montre la température et les précipitations mensuelles. Voici une solution simple, généralisée à partir de la solution de Megatron en vous permettant de définir la limite inférieure des variables sur autre chose que zéro:

Exemple de données:

climate <- tibble(
  Month = 1:12,
  Temp = c(-4,-4,0,5,11,15,16,15,11,6,1,-3),
  Precip = c(49,36,47,41,53,65,81,89,90,84,73,55)
  )

Définissez les limites de chaque axe manuellement:

ylim.prim <- c(0, 180)   # in this example, precipitation
ylim.sec <- c(-4, 18)    # in this example, temperature

Ce qui suit effectue les calculs nécessaires en fonction de ces limites et crée le tracé lui-même:

b <- diff(ylim.prim)/diff(ylim.sec)
a <- b*(ylim.prim[1] - ylim.sec[1])

ggplot(climate, aes(Month, Precip)) +
  geom_col() +
  geom_line(aes(y = a + Temp*b), color = "red") +
  scale_y_continuous("Precipitation", sec.axis = sec_axis(~ (. - a)/b, name = "Temperature")) +
  scale_x_continuous("Month", breaks = 1:12) +
  ggtitle("Climatogram for Oslo (1961-1990)")  

Climatogram showing temperature as line and precipitation as barplot

Si vous voulez vous assurer que la ligne rouge correspond à l'axe y de droite, vous pouvez ajouter une phrase theme au code:

ggplot(climate, aes(Month, Precip)) +
  geom_col() +
  geom_line(aes(y = a + Temp*b), color = "red") +
  scale_y_continuous("Precipitation", sec.axis = sec_axis(~ (. - a)/b, name = "Temperature")) +
  scale_x_continuous("Month", breaks = 1:12) +
  theme(axis.line.y.right = element_line(color = "red"), 
        axis.ticks.y.right = element_line(color = "red"),
        axis.text.y.right = element_text(color = "red"), 
        axis.title.y.right = element_text(color = "red")
        ) +
  ggtitle("Climatogram for Oslo (1961-1990)")

qui colore l'axe de droite:

Climatogram with red right-hand axis

12
Dag Hjermann

L'article suivant m'a aidé à combiner deux parcelles générées par ggplot2 sur une seule ligne:

Plusieurs graphiques sur une page (ggplot2) par Cookbook for R

Et voici à quoi le code peut ressembler dans ce cas:

p1 <- 
  ggplot() + aes(mns)+ geom_histogram(aes(y=..density..), binwidth=0.01, colour="black", fill="white") + geom_vline(aes(xintercept=mean(mns, na.rm=T)), color="red", linetype="dashed", size=1) +  geom_density(alpha=.2)

p2 <- 
  ggplot() + aes(mns)+ geom_histogram( binwidth=0.01, colour="black", fill="white") + geom_vline(aes(xintercept=mean(mns, na.rm=T)), color="red", linetype="dashed", size=1)  

multiplot(p1,p2,cols=2)
9
Stas Prihod'co

Vous pouvez créer un facteur de mise à l'échelle qui est appliqué au deuxième axe géographique et à l'axe des y droit. Ceci est dérivé de la solution de Sebastian.

library(ggplot2)

scaleFactor <- max(mtcars$cyl) / max(mtcars$hp)

ggplot(mtcars, aes(x=disp)) +
  geom_smooth(aes(y=cyl), method="loess", col="blue") +
  geom_smooth(aes(y=hp * scaleFactor), method="loess", col="red") +
  scale_y_continuous(name="cyl", sec.axis=sec_axis(~./scaleFactor, name="hp")) +
  theme(
    axis.title.y.left=element_text(color="blue"),
    axis.text.y.left=element_text(color="blue"),
    axis.title.y.right=element_text(color="red"),
    axis.text.y.right=element_text(color="red")
  )

enter image description here

Remarque: utilisation de ggplot2v3.0.

7
Megatron

Pour moi, la partie la plus délicate était de déterminer la fonction de transformation entre les deux axes. J'ai utilisé myCurveFit pour cela.

> dput(combined_80_8192 %>% filter (time > 270, time < 280))
structure(list(run = c(268L, 268L, 268L, 268L, 268L, 268L, 268L, 
268L, 268L, 268L, 263L, 263L, 263L, 263L, 263L, 263L, 263L, 263L, 
263L, 263L, 269L, 269L, 269L, 269L, 269L, 269L, 269L, 269L, 269L, 
269L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 
267L, 267L, 267L, 267L, 267L, 267L, 267L, 267L, 267L, 267L, 265L, 
265L, 265L, 265L, 265L, 265L, 265L, 265L, 265L, 265L, 266L, 266L, 
266L, 266L, 266L, 266L, 266L, 266L, 266L, 266L, 262L, 262L, 262L, 
262L, 262L, 262L, 262L, 262L, 262L, 262L, 264L, 264L, 264L, 264L, 
264L, 264L, 264L, 264L, 264L, 264L, 260L, 260L, 260L, 260L, 260L, 
260L, 260L, 260L, 260L, 260L), repetition = c(8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
), module = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "scenario.node[0].nicVLCTail.phyVLC", class = "factor"), 
    configname = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L), .Label = "Road-Vlc", class = "factor"), packetByteLength = c(8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L
    ), numVehicles = c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L
    ), dDistance = c(80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L), time = c(270.166006903445, 
    271.173853699836, 272.175873251122, 273.177524313334, 274.182946177105, 
    275.188959464989, 276.189675339937, 277.198250244799, 278.204619457189, 
    279.212562800009, 270.164199199177, 271.168527215152, 272.173072994958, 
    273.179210429715, 274.184351047337, 275.18980754378, 276.194816792995, 
    277.198598277809, 278.202398083519, 279.210634593917, 270.210674322891, 
    271.212395107473, 272.218871923292, 273.219060500457, 274.220486359614, 
    275.22401452372, 276.229646658839, 277.231060448138, 278.240407241942, 
    279.2437126347, 270.283554249858, 271.293168593832, 272.298574288769, 
    273.304413221348, 274.306272082517, 275.309023049011, 276.317805897347, 
    277.324403550028, 278.332855848701, 279.334046374594, 270.118608539613, 
    271.127947700074, 272.133887145863, 273.135726000491, 274.135994529981, 
    275.136563912708, 276.140120735361, 277.144298344151, 278.146885137621, 
    279.147552358659, 270.206015567272, 271.214618077209, 272.216566814903, 
    273.225435592582, 274.234014573683, 275.242949179958, 276.248417809711, 
    277.248800670023, 278.249750333404, 279.252926560188, 270.217182684494, 
    271.218357511397, 272.224698488895, 273.231112784327, 274.238740508457, 
    275.242715184122, 276.249053562718, 277.250325509798, 278.258488063493, 
    279.261141590137, 270.282904173953, 271.284689544638, 272.294220723234, 
    273.299749415592, 274.30628880553, 275.312075103126, 276.31579134717, 
    277.321905523606, 278.326305136748, 279.333056502253, 270.258991527456, 
    271.260224091407, 272.270076810133, 273.27052037648, 274.274119348094, 
    275.280808254502, 276.286353887245, 277.287064312339, 278.294444793276, 
    279.296772014594, 270.333066283904, 271.33877455992, 272.345842319903, 
    273.350858180493, 274.353972278505, 275.360454510107, 276.365088896161, 
    277.369166956941, 278.372571708911, 279.38017503079), distanceToTx = c(80.255266401689, 
    80.156059067023, 79.98823695539, 79.826647129071, 79.76678667135, 
    79.788239825292, 79.734539327997, 79.74766421514, 79.801243848241, 
    79.765920888341, 80.255266401689, 80.15850240049, 79.98823695539, 
    79.826647129071, 79.76678667135, 79.788239825292, 79.735078924078, 
    79.74766421514, 79.801243848241, 79.764622734914, 80.251248121732, 
    80.146436869316, 79.984682320466, 79.82292012342, 79.761908518748, 
    79.796988776281, 79.736920997657, 79.745038376718, 79.802638836686, 
    79.770029970452, 80.243475525691, 80.127918207499, 79.978303140866, 
    79.816259117883, 79.749322030693, 79.809916018889, 79.744456560867, 
    79.738655068783, 79.788697533211, 79.784288359619, 80.260412958482, 
    80.168426829066, 79.992034911214, 79.830845773284, 79.7756751763, 
    79.778156038931, 79.732399593756, 79.752769548846, 79.799967731078, 
    79.757585110481, 80.251248121732, 80.146436869316, 79.984682320466, 
    79.822062073459, 79.75884601899, 79.801590491435, 79.738335109094, 
    79.74347007248, 79.803215965043, 79.771471198955, 80.250257298678, 
    80.146436869316, 79.983831684476, 79.822062073459, 79.75884601899, 
    79.801590491435, 79.738335109094, 79.74347007248, 79.803849157574, 
    79.771471198955, 80.243475525691, 80.130180105198, 79.978303140866, 
    79.816881283718, 79.749322030693, 79.80984572883, 79.744456560867, 
    79.738655068783, 79.790548644175, 79.784288359619, 80.246349000313, 
    80.137056554491, 79.980581246037, 79.818924707937, 79.753176142361, 
    79.808777040341, 79.741609845588, 79.740770913572, 79.796316397253, 
    79.777593733292, 80.238796415443, 80.119021911134, 79.974810568944, 
    79.814065350562, 79.743657315504, 79.810146783217, 79.749945098869, 
    79.737122584544, 79.781650522348, 79.791554933936), headerNoError = c(0.99999999989702, 
    0.9999999999981, 0.99999999999946, 0.9999999928026, 0.99999873265475, 
    0.77080141574964, 0.99007491438593, 0.99994396605059, 0.45588747062284, 
    0.93484381262491, 0.99999999989702, 0.99999999999816, 0.99999999999946, 
    0.9999999928026, 0.99999873265475, 0.77080141574964, 0.99008458785106, 
    0.99994396605059, 0.45588747062284, 0.93480223051707, 0.99999999989735, 
    0.99999999999789, 0.99999999999946, 0.99999999287551, 0.99999876302649, 
    0.46903147501117, 0.98835168988253, 0.99994427085086, 0.45235035271542, 
    0.93496741877335, 0.99999999989803, 0.99999999999781, 0.99999999999948, 
    0.99999999318224, 0.99994254156311, 0.46891362282273, 0.93382613917348, 
    0.99994594904099, 0.93002915596843, 0.93569767251247, 0.99999999989658, 
    0.99999999998074, 0.99999999999946, 0.99999999272802, 0.99999871586781, 
    0.76935240919896, 0.99002587758346, 0.99999881589732, 0.46179415706093, 
    0.93417422376389, 0.99999999989735, 0.99999999999789, 0.99999999999946, 
    0.99999999289347, 0.99999876940486, 0.46930769326427, 0.98837353639905, 
    0.99994447154714, 0.16313586712094, 0.93500824170148, 0.99999999989744, 
    0.99999999999789, 0.99999999999946, 0.99999999289347, 0.99999876940486, 
    0.46930769326427, 0.98837353639905, 0.99994447154714, 0.16330039178981, 
    0.93500824170148, 0.99999999989803, 0.99999999999781, 0.99999999999948, 
    0.99999999316541, 0.99994254156311, 0.46794586553266, 0.93382613917348, 
    0.99994594904099, 0.9303627789484, 0.93569767251247, 0.99999999989778, 
    0.9999999999978, 0.99999999999948, 0.99999999311433, 0.99999878195152, 
    0.47101897739483, 0.93368891853679, 0.99994556595217, 0.7571113417265, 
    0.93553999975802, 0.99999999998191, 0.99999999999784, 0.99999999999971, 
    0.99999891129658, 0.99994309267792, 0.46510628979591, 0.93442584181035, 
    0.99894450514543, 0.99890078483692, 0.76933812306423), receivedPower_dbm = c(-93.023492290586, 
    -92.388378035287, -92.205716340607, -93.816400586752, -95.023489422885, 
    -100.86308557253, -98.464763536915, -96.175707680373, -102.06189538385, 
    -99.716653422746, -93.023492290586, -92.384760627397, -92.205716340607, 
    -93.816400586752, -95.023489422885, -100.86308557253, -98.464201120719, 
    -96.175707680373, -102.06189538385, -99.717150021506, -93.022927803442, 
    -92.404017215549, -92.204561341714, -93.814319484729, -95.016990717792, 
    -102.01669022332, -98.558088145955, -96.173817001483, -102.07406915124, 
    -99.71517574876, -93.021813165972, -92.409586309743, -92.20229160243, 
    -93.805335867418, -96.184419849593, -102.01709540787, -99.728735187547, 
    -96.163233028048, -99.772547164798, -99.706399753853, -93.024204617071, 
    -92.745813384859, -92.206884754512, -93.818508150122, -95.027018807793, 
    -100.87000577258, -98.467607232407, -95.005311380324, -102.04157607608, 
    -99.724619517, -93.022927803442, -92.404017215549, -92.204561341714, 
    -93.813803344588, -95.015606885523, -102.0157405687, -98.556982278361, 
    -96.172566862738, -103.21871579865, -99.714687230796, -93.022787428238, 
    -92.404017215549, -92.204274688493, -93.813803344588, -95.015606885523, 
    -102.0157405687, -98.556982278361, -96.172566862738, -103.21784988098, 
    -99.714687230796, -93.021813165972, -92.409950613665, -92.20229160243, 
    -93.805838770576, -96.184419849593, -102.02042267497, -99.728735187547, 
    -96.163233028048, -99.768774335378, -99.706399753853, -93.022228914406, 
    -92.411048503835, -92.203136463155, -93.807357409082, -95.012865008237, 
    -102.00985717796, -99.730352912911, -96.165675535906, -100.92744056572, 
    -99.708301333236, -92.735781110993, -92.408137395049, -92.119533319039, 
    -94.982938427575, -96.181073124017, -102.03018610927, -99.721633629806, 
    -97.32940323644, -97.347613268692, -100.87007386786), snr = c(49.848348091678, 
    57.698190927109, 60.17669971462, 41.529809724535, 31.452202106925, 
    8.1976890851341, 14.240447804094, 24.122884195464, 6.2202875499406, 
    10.674183333671, 49.848348091678, 57.746270018264, 60.17669971462, 
    41.529809724535, 31.452202106925, 8.1976890851341, 14.242292077376, 
    24.122884195464, 6.2202875499406, 10.672962852322, 49.854827699773, 
    57.49079026127, 60.192705735317, 41.549715223147, 31.499301851462, 
    6.2853718719014, 13.937702343688, 24.133388256416, 6.2028757927148, 
    10.677815810561, 49.867624820879, 57.417115267867, 60.224172277442, 
    41.635752021705, 24.074540962859, 6.2847854917092, 10.644529778044, 
    24.19227425387, 10.537686730745, 10.699414795917, 49.84017267426, 
    53.139646558768, 60.160512118809, 41.509660845114, 31.42665220053, 
    8.1846370024428, 14.231126423354, 31.584125885363, 6.2494585568733, 
    10.654622041348, 49.854827699773, 57.49079026127, 60.192705735317, 
    41.55465351989, 31.509340361646, 6.2867464196657, 13.941251828322, 
    24.140336174865, 4.765718874642, 10.679016976694, 49.856439162736, 
    57.49079026127, 60.196678846453, 41.55465351989, 31.509340361646, 
    6.2867464196657, 13.941251828322, 24.140336174865, 4.7666691818074, 
    10.679016976694, 49.867624820879, 57.412299088098, 60.224172277442, 
    41.630930975211, 24.074540962859, 6.279972363168, 10.644529778044, 
    24.19227425387, 10.546845071479, 10.699414795917, 49.862851240855, 
    57.397787176282, 60.212457625018, 41.61637603957, 31.529239767749, 
    6.2952688513108, 10.640565481982, 24.178672145334, 8.0771089950663, 
    10.694731030907, 53.262541905639, 57.43627424514, 61.382796189332, 
    31.747253311549, 24.093100244121, 6.2658701281075, 10.661949889074, 
    18.495227442305, 18.417839037171, 8.1845086722809), frameId = c(15051, 
    15106, 15165, 15220, 15279, 15330, 15385, 15452, 15511, 15566, 
    15019, 15074, 15129, 15184, 15239, 15298, 15353, 15412, 15471, 
    15526, 14947, 14994, 15057, 15112, 15171, 15226, 15281, 15332, 
    15391, 15442, 14971, 15030, 15085, 15144, 15203, 15262, 15321, 
    15380, 15435, 15490, 14915, 14978, 15033, 15092, 15147, 15198, 
    15257, 15312, 15371, 15430, 14975, 15034, 15089, 15140, 15195, 
    15254, 15313, 15368, 15427, 15478, 14987, 15046, 15105, 15160, 
    15215, 15274, 15329, 15384, 15447, 15506, 14943, 15002, 15061, 
    15116, 15171, 15230, 15285, 15344, 15399, 15454, 14971, 15026, 
    15081, 15136, 15195, 15258, 15313, 15368, 15423, 15478, 15039, 
    15094, 15149, 15204, 15263, 15314, 15369, 15428, 15487, 15546
    ), packetOkSinr = c(0.99999999314881, 0.9999999998736, 0.99999999996428, 
    0.99999952114066, 0.99991568416005, 3.00628034688444e-08, 
    0.51497487795954, 0.99627877136019, 0, 0.011303253101957, 
    0.99999999314881, 0.99999999987726, 0.99999999996428, 0.99999952114066, 
    0.99991568416005, 3.00628034688444e-08, 0.51530974419663, 
    0.99627877136019, 0, 0.011269851265775, 0.9999999931708, 
    0.99999999985986, 0.99999999996428, 0.99999952599145, 0.99991770469509, 
    0, 0.45861812482641, 0.99629897628155, 0, 0.011403119534097, 
    0.99999999321568, 0.99999999985437, 0.99999999996519, 0.99999954639936, 
    0.99618434878558, 0, 0.010513119213425, 0.99641022914441, 
    0.00801687746446111, 0.012011103529927, 0.9999999931195, 
    0.99999999871861, 0.99999999996428, 0.99999951617905, 0.99991456738049, 
    2.6525298291169e-08, 0.51328066587104, 0.9999212220316, 0, 
    0.010777054258914, 0.9999999931708, 0.99999999985986, 0.99999999996428, 
    0.99999952718674, 0.99991812902805, 0, 0.45929307038653, 
    0.99631228046814, 0, 0.011436292559188, 0.99999999317629, 
    0.99999999985986, 0.99999999996428, 0.99999952718674, 0.99991812902805, 
    0, 0.45929307038653, 0.99631228046814, 0, 0.011436292559188, 
    0.99999999321568, 0.99999999985437, 0.99999999996519, 0.99999954527918, 
    0.99618434878558, 0, 0.010513119213425, 0.99641022914441, 
    0.00821047996950475, 0.012011103529927, 0.99999999319919, 
    0.99999999985345, 0.99999999996519, 0.99999954188106, 0.99991896371849, 
    0, 0.010410830482692, 0.996384831822, 9.12484388049251e-09, 
    0.011877185067536, 0.99999999879646, 0.9999999998562, 0.99999999998077, 
    0.99992756868677, 0.9962208785486, 0, 0.010971897073662, 
    0.93214999078663, 0.92943956665979, 2.64925478221656e-08), 
    snir = c(49.848348091678, 57.698190927109, 60.17669971462, 
    41.529809724535, 31.452202106925, 8.1976890851341, 14.240447804094, 
    24.122884195464, 6.2202875499406, 10.674183333671, 49.848348091678, 
    57.746270018264, 60.17669971462, 41.529809724535, 31.452202106925, 
    8.1976890851341, 14.242292077376, 24.122884195464, 6.2202875499406, 
    10.672962852322, 49.854827699773, 57.49079026127, 60.192705735317, 
    41.549715223147, 31.499301851462, 6.2853718719014, 13.937702343688, 
    24.133388256416, 6.2028757927148, 10.677815810561, 49.867624820879, 
    57.417115267867, 60.224172277442, 41.635752021705, 24.074540962859, 
    6.2847854917092, 10.644529778044, 24.19227425387, 10.537686730745, 
    10.699414795917, 49.84017267426, 53.139646558768, 60.160512118809, 
    41.509660845114, 31.42665220053, 8.1846370024428, 14.231126423354, 
    31.584125885363, 6.2494585568733, 10.654622041348, 49.854827699773, 
    57.49079026127, 60.192705735317, 41.55465351989, 31.509340361646, 
    6.2867464196657, 13.941251828322, 24.140336174865, 4.765718874642, 
    10.679016976694, 49.856439162736, 57.49079026127, 60.196678846453, 
    41.55465351989, 31.509340361646, 6.2867464196657, 13.941251828322, 
    24.140336174865, 4.7666691818074, 10.679016976694, 49.867624820879, 
    57.412299088098, 60.224172277442, 41.630930975211, 24.074540962859, 
    6.279972363168, 10.644529778044, 24.19227425387, 10.546845071479, 
    10.699414795917, 49.862851240855, 57.397787176282, 60.212457625018, 
    41.61637603957, 31.529239767749, 6.2952688513108, 10.640565481982, 
    24.178672145334, 8.0771089950663, 10.694731030907, 53.262541905639, 
    57.43627424514, 61.382796189332, 31.747253311549, 24.093100244121, 
    6.2658701281075, 10.661949889074, 18.495227442305, 18.417839037171, 
    8.1845086722809), ookSnirBer = c(8.8808636558081e-24, 3.2219795637026e-27, 
    2.6468895519653e-28, 3.9807779074715e-20, 1.0849324265615e-15, 
    2.5705217057696e-05, 4.7313805615763e-08, 1.8800438086075e-12, 
    0.00021005320203921, 1.9147343768384e-06, 8.8808636558081e-24, 
    3.0694773489537e-27, 2.6468895519653e-28, 3.9807779074715e-20, 
    1.0849324265615e-15, 2.5705217057696e-05, 4.7223753038869e-08, 
    1.8800438086075e-12, 0.00021005320203921, 1.9171738578051e-06, 
    8.8229427230445e-24, 3.9715925056443e-27, 2.6045198111088e-28, 
    3.9014083702734e-20, 1.0342658440386e-15, 0.00019591630514278, 
    6.4692014108683e-08, 1.8600094209271e-12, 0.0002140067535655, 
    1.9074922485477e-06, 8.7096574467175e-24, 4.2779443633862e-27, 
    2.5231916788231e-28, 3.5761615214425e-20, 1.9750692814982e-12, 
    0.0001960392878411, 1.9748966344895e-06, 1.7515881895994e-12, 
    2.2078334799411e-06, 1.8649940680806e-06, 8.954486301678e-24, 
    3.2021085732779e-25, 2.690441113724e-28, 4.0627628846548e-20, 
    1.1134484878561e-15, 2.6061691733331e-05, 4.777159157954e-08, 
    9.4891388749738e-16, 0.00020359398491544, 1.9542110660398e-06, 
    8.8229427230445e-24, 3.9715925056443e-27, 2.6045198111088e-28, 
    3.8819641115984e-20, 1.0237769828158e-15, 0.00019562832342849, 
    6.4455095380046e-08, 1.8468752030971e-12, 0.0010099091367628, 
    1.9051035165106e-06, 8.8085966897635e-24, 3.9715925056443e-27, 
    2.594108048185e-28, 3.8819641115984e-20, 1.0237769828158e-15, 
    0.00019562832342849, 6.4455095380046e-08, 1.8468752030971e-12, 
    0.0010088638355194, 1.9051035165106e-06, 8.7096574467175e-24, 
    4.2987746909572e-27, 2.5231916788231e-28, 3.593647329558e-20, 
    1.9750692814982e-12, 0.00019705170257492, 1.9748966344895e-06, 
    1.7515881895994e-12, 2.1868296425817e-06, 1.8649940680806e-06, 
    8.7517439682173e-24, 4.3621551072316e-27, 2.553168170837e-28, 
    3.6469582463164e-20, 1.0032983660212e-15, 0.00019385229409318, 
    1.9830820164805e-06, 1.7760568361323e-12, 2.919419915209e-05, 
    1.8741284335866e-06, 2.8285944348148e-25, 4.1960751547207e-27, 
    7.8468215407139e-29, 8.0407329049747e-16, 1.9380328071065e-12, 
    0.00020004849911333, 1.9393279417733e-06, 5.9354475879597e-10, 
    6.4258355913627e-10, 2.6065221215415e-05), ookSnrBer = c(8.8808636558081e-24, 
    3.2219795637026e-27, 2.6468895519653e-28, 3.9807779074715e-20, 
    1.0849324265615e-15, 2.5705217057696e-05, 4.7313805615763e-08, 
    1.8800438086075e-12, 0.00021005320203921, 1.9147343768384e-06, 
    8.8808636558081e-24, 3.0694773489537e-27, 2.6468895519653e-28, 
    3.9807779074715e-20, 1.0849324265615e-15, 2.5705217057696e-05, 
    4.7223753038869e-08, 1.8800438086075e-12, 0.00021005320203921, 
    1.9171738578051e-06, 8.8229427230445e-24, 3.9715925056443e-27, 
    2.6045198111088e-28, 3.9014083702734e-20, 1.0342658440386e-15, 
    0.00019591630514278, 6.4692014108683e-08, 1.8600094209271e-12, 
    0.0002140067535655, 1.9074922485477e-06, 8.7096574467175e-24, 
    4.2779443633862e-27, 2.5231916788231e-28, 3.5761615214425e-20, 
    1.9750692814982e-12, 0.0001960392878411, 1.9748966344895e-06, 
    1.7515881895994e-12, 2.2078334799411e-06, 1.8649940680806e-06, 
    8.954486301678e-24, 3.2021085732779e-25, 2.690441113724e-28, 
    4.0627628846548e-20, 1.1134484878561e-15, 2.6061691733331e-05, 
    4.777159157954e-08, 9.4891388749738e-16, 0.00020359398491544, 
    1.9542110660398e-06, 8.8229427230445e-24, 3.9715925056443e-27, 
    2.6045198111088e-28, 3.8819641115984e-20, 1.0237769828158e-15, 
    0.00019562832342849, 6.4455095380046e-08, 1.8468752030971e-12, 
    0.0010099091367628, 1.9051035165106e-06, 8.8085966897635e-24, 
    3.9715925056443e-27, 2.594108048185e-28, 3.8819641115984e-20, 
    1.0237769828158e-15, 0.00019562832342849, 6.4455095380046e-08, 
    1.8468752030971e-12, 0.0010088638355194, 1.9051035165106e-06, 
    8.7096574467175e-24, 4.2987746909572e-27, 2.5231916788231e-28, 
    3.593647329558e-20, 1.9750692814982e-12, 0.00019705170257492, 
    1.9748966344895e-06, 1.7515881895994e-12, 2.1868296425817e-06, 
    1.8649940680806e-06, 8.7517439682173e-24, 4.3621551072316e-27, 
    2.553168170837e-28, 3.6469582463164e-20, 1.0032983660212e-15, 
    0.00019385229409318, 1.9830820164805e-06, 1.7760568361323e-12, 
    2.919419915209e-05, 1.8741284335866e-06, 2.8285944348148e-25, 
    4.1960751547207e-27, 7.8468215407139e-29, 8.0407329049747e-16, 
    1.9380328071065e-12, 0.00020004849911333, 1.9393279417733e-06, 
    5.9354475879597e-10, 6.4258355913627e-10, 2.6065221215415e-05
    )), class = "data.frame", row.names = c(NA, -100L), .Names = c("run", 
"repetition", "module", "configname", "packetByteLength", "numVehicles", 
"dDistance", "time", "distanceToTx", "headerNoError", "receivedPower_dbm", 
"snr", "frameId", "packetOkSinr", "snir", "ookSnirBer", "ookSnrBer"
))

Recherche de la fonction de transformation

  1. y1 -> y2 Cette fonction permet de transformer les données de l'axe y secondaire en "valeurs normalisées" en fonction du premier axe y.

enter image description here

fonction de transformation: f(y1) = 0.025*x + 2.75


  1. y2 -> y1 Cette fonction permet de transformer les points de rupture du premier axe des ordonnées en valeurs du deuxième axe des y. Notez que les axes sont maintenant permutés.

enter image description here

fonction de transformation: f(y1) = 40*x - 110


Tracé

Notez comment les fonctions de transformation sont utilisées dans l'appel ggplot pour transformer les données "à la volée"

ggplot(data=combined_80_8192 %>% filter (time > 270, time < 280), aes(x=time) ) +
  stat_summary(aes(y=receivedPower_dbm ), fun.y=mean, geom="line", colour="black") +
  stat_summary(aes(y=packetOkSinr*40 - 110 ), fun.y=mean, geom="line", colour="black", position = position_dodge(width=10)) +
  scale_x_continuous() +
  scale_y_continuous(breaks = seq(-0,-110,-10), "y_first", sec.axis=sec_axis(~.*0.025+2.75, name="y_second") ) 

Le premier appel stat_summary est celui qui définit la base du premier axe y. Le deuxième appel stat_summary est appelé pour transformer les données. Rappelez-vous que toutes les données prendront comme base le premier axe des y. Donc, les données doivent être normalisées pour le premier axe des ordonnées. Pour ce faire, j'utilise la fonction de transformation sur les données: y=packetOkSinr*40 - 110

Maintenant, pour transformer le deuxième axe, j'utilise la fonction opposée dans l'appel scale_y_continuous: sec.axis=sec_axis(~.*0.025+2.75, name="y_second").

enter image description here

6
user4786271

Nous pourrions certainement construire une parcelle avec un double axe Y en utilisant la fonction de base R plot.

# pseudo dataset
df <- data.frame(x = seq(1, 1000, 1), y1 = sample.int(100, 1000, replace=T), y2 = sample(50, 1000, replace = T))

# plot first plot 
with(df, plot(y1 ~ x, col = "red"))

# set new plot
par(new = T) 

# plot second plot, but without axis
with(df, plot(y2 ~ x, type = "l", xaxt = "n", yaxt = "n", xlab = "", ylab = ""))

# define y-axis and put y-labs
axis(4)
with(df, mtext("y2", side = 4))
4
Demo

Vous pouvez utiliser facet_wrap(~ variable, ncol= ) sur une variable pour créer une nouvelle comparaison. Ce n'est pas sur le même axe, mais c'est similaire.

1
jchaykow

Je reconnais et suis d'accord avec Hadley (et d'autres), que les échelles y séparées sont "fondamentalement défectueuses". Cela dit - je souhaite souvent que ggplot2 ait la fonctionnalité - en particulier lorsque les données sont en format large et je souhaite rapidement visualiser ou vérifier les données (c.-à-d. Pour un usage personnel uniquement) .

Bien que la bibliothèque tidyverse facilite la conversion des données au format long (de sorte que facet_grid() fonctionne), le processus n’est pas encore trivial, comme on le voit ci-dessous:

library(tidyverse)
df.wide %>%
    # Select only the columns you need for the plot.
    select(date, column1, column2, column3) %>%
    # Create an id column – needed in the `gather()` function.
    mutate(id = n()) %>%
    # The `gather()` function converts to long-format. 
    # In which the `type` column will contain three factors (column1, column2, column3),
    # and the `value` column will contain the respective values.
    # All the while we retain the `id` and `date` columns.
    gather(type, value, -id, -date) %>%
    # Create the plot according to your specifications
    ggplot(aes(x = date, y = value)) +
        geom_line() +
        # Create a panel for each `type` (ie. column1, column2, column3).
        # If the types have different scales, you can use the `scales="free"` option.
        facet_grid(type~., scales = "free")
1
bonna

Il semble que ce soit une question simple, mais elle reste sans réponse autour de deux questions fondamentales. A) Comment traiter des données multi-scalaires tout en présentant un graphique comparatif, et deuxièmement, B) si cela peut être fait sans certaines pratiques de la règle R de la programmation R telles que i) la fusion des données, ii) le facettage, iii) l'ajout une autre couche à celle existante. La solution donnée ci-dessous satisfait à la fois aux conditions ci-dessus, car elle traite des données sans avoir à les redimensionner. Deuxièmement, les techniques mentionnées ne sont pas utilisées.

Voici le résultat, better and improved

Pour ceux qui souhaitent en savoir plus sur cette méthode, veuillez suivre le lien ci-dessous. Comment tracer un graphique d'axe 2-y avec des barres côte à côte sans redimensionner les données

0
ambrish dhaka

La réponse de Hadley donne une référence intéressante au rapport de Stephen Few Les axes à double échelle dans les graphiques sont-ils toujours la meilleure solution? .

Je ne sais pas ce que signifie le PO avec "comptes" et "taux", mais une recherche rapide me donne comptes et tarifs , je reçois donc des données sur les accidents en alpinisme nord-américain.1:

Years<-c("1998","1999","2000","2001","2002","2003","2004")
Persons.Involved<-c(281,248,301,276,295,231,311)
Fatalities<-c(20,17,24,16,34,18,35)
rate=100*Fatalities/Persons.Involved
df<-data.frame(Years=Years,Persons.Involved=Persons.Involved,Fatalities=Fatalities,rate=rate)
print(df,row.names = FALSE)

 Years Persons.Involved Fatalities      rate
  1998              281         20  7.117438
  1999              248         17  6.854839
  2000              301         24  7.973422
  2001              276         16  5.797101
  2002              295         34 11.525424
  2003              231         18  7.792208
  2004              311         35 11.254019

Et puis j'ai essayé de faire le graphique comme suggéré par Peu à la page 7 du rapport susmentionné (et suite à la demande de OP de représenter graphiquement les nombres sous forme d'histogramme et les taux sous forme de graphique linéaire):

L’autre solution moins évidente, qui ne fonctionne que pour les séries chronologiques, consiste à convertir tous les ensembles de valeurs en une échelle quantitative commune en affichant des différences en pourcentage entre chaque valeur et une valeur de référence (ou d’index). Par exemple, sélectionnez un point dans le temps, tel que le premier intervalle qui apparaît dans le graphique, et exprimez chaque valeur suivante en pourcentage de différence entre celui-ci et la valeur initiale. Pour ce faire, divisez la valeur à chaque instant par la valeur du moment initial, puis multipliez-la par 100 pour convertir le taux en pourcentage, comme illustré ci-dessous.

df2<-df
df2$Persons.Involved <- 100*df$Persons.Involved/df$Persons.Involved[1]
df2$rate <- 100*df$rate/df$rate[1]
plot(ggplot(df2)+
  geom_bar(aes(x=Years,weight=Persons.Involved))+
  geom_line(aes(x=Years,y=rate,group=1))+
  theme(text = element_text(size=30))
  )

Et voici le résultat: enter image description here

Mais je ne l’aime pas beaucoup et je ne parviens pas à y mettre une légende facilement ...

WILLIAMSON, Jed et al. Accidents survenus en Amérique du Nord en 2005. The Mountaineers Books, 2005.

0
Alessandro Jacopson