Travailler avec un bloc de données semblable à ceci:
set.seed(100)
df <- data.frame(cat = c(rep("aaa", 5), rep("bbb", 5), rep("ccc", 5)), val = runif(15))
df <- df[order(df$cat, df$val), ]
df
cat val
1 aaa 0.05638315
2 aaa 0.25767250
3 aaa 0.30776611
4 aaa 0.46854928
5 aaa 0.55232243
6 bbb 0.17026205
7 bbb 0.37032054
8 bbb 0.48377074
9 bbb 0.54655860
10 bbb 0.81240262
11 ccc 0.28035384
12 ccc 0.39848790
13 ccc 0.62499648
14 ccc 0.76255108
15 ccc 0.88216552
J'essaie d'ajouter une colonne numérotée dans chaque groupe. Le faire de cette façon n'utilise évidemment pas les pouvoirs de R:
df$num <- 1
for (i in 2:(length(df[,1]))) {
if (df[i,"cat"]==df[(i-1),"cat"]) {
df[i,"num"]<-df[i-1,"num"]+1
}
}
df
cat val num
1 aaa 0.05638315 1
2 aaa 0.25767250 2
3 aaa 0.30776611 3
4 aaa 0.46854928 4
5 aaa 0.55232243 5
6 bbb 0.17026205 1
7 bbb 0.37032054 2
8 bbb 0.48377074 3
9 bbb 0.54655860 4
10 bbb 0.81240262 5
11 ccc 0.28035384 1
12 ccc 0.39848790 2
13 ccc 0.62499648 3
14 ccc 0.76255108 4
15 ccc 0.88216552 5
Quel serait un bon moyen de faire cela?
Utilisez ave
, ddply
, dplyr
ou data.table
:
df$num <- ave(df$val, df$cat, FUN = seq_along)
ou:
library(plyr)
ddply(df, .(cat), mutate, id = seq_along(val))
ou:
library(dplyr)
df %>% group_by(cat) %>% mutate(id = row_number())
ou (le plus économe en mémoire, car il attribue une référence dans DT
):
library(data.table)
DT <- data.table(df)
DT[, id := seq_len(.N), by = cat]
DT[, id := rowid(cat)]
Pour rendre cette r-faq question plus complète, une alternative de base R avec sequence
et rle
:
df$num <- sequence(rle(df$cat)$lengths)
qui donne le résultat souhaité:
> df cat val num 4 aaa 0.05638315 1 2 aaa 0.25767250 2 1 aaa 0.30776611 3 5 aaa 0.46854928 4 3 aaa 0.55232243 5 10 bbb 0.17026205 1 8 bbb 0.37032054 2 6 bbb 0.48377074 3 9 bbb 0.54655860 4 7 bbb 0.81240262 5 13 ccc 0.28035384 1 14 ccc 0.39848790 2 11 ccc 0.62499648 3 15 ccc 0.76255108 4 12 ccc 0.88216552 5
Si df$cat
est une variable facteur, vous devez l’envelopper dans as.character
première:
df$num <- sequence(rle(as.character(df$cat))$lengths)
Voici une option utilisant une boucle for
par groupes plutôt que par lignes (comme l'OP l'a fait)
for (i in unique(df$cat)) df$num[df$cat == i] <- seq_len(sum(df$cat == i))
Voici un petit truc d'amélioration qui permet de trier 'val' au sein des groupes:
# 1. Data set
set.seed(100)
df <- data.frame(
cat = c(rep("aaa", 5), rep("ccc", 5), rep("bbb", 5)),
val = runif(15))
# 2. 'dplyr' approach
df %>%
arrange(cat, val) %>%
group_by(cat) %>%
mutate(id = row_number())
J'aimerais ajouter une variante data.table
À l'aide de la fonction rank()
, qui offre la possibilité supplémentaire de modifier l'ordre et donc de le rendre un peu plus flexible que la solution seq_len()
et est assez similaire aux fonctions row_number dans le SGBDR.
# Variant with ascending ordering
library(data.table)
dt <- data.table(df)
dt[, .( val
, num = rank(val))
, by = list(cat)][order(cat, num),]
cat val num
1: aaa 0.05638315 1
2: aaa 0.25767250 2
3: aaa 0.30776611 3
4: aaa 0.46854928 4
5: aaa 0.55232243 5
6: bbb 0.17026205 1
7: bbb 0.37032054 2
8: bbb 0.48377074 3
9: bbb 0.54655860 4
10: bbb 0.81240262 5
11: ccc 0.28035384 1
12: ccc 0.39848790 2
13: ccc 0.62499648 3
14: ccc 0.76255108 4
# Variant with descending ordering
dt[, .( val
, num = rank(-val))
, by = list(cat)][order(cat, num),]
Une autre possibilité dplyr
pourrait être:
df %>%
group_by(cat) %>%
mutate(num = 1:n())
cat val num
<fct> <dbl> <int>
1 aaa 0.0564 1
2 aaa 0.258 2
3 aaa 0.308 3
4 aaa 0.469 4
5 aaa 0.552 5
6 bbb 0.170 1
7 bbb 0.370 2
8 bbb 0.484 3
9 bbb 0.547 4
10 bbb 0.812 5
11 ccc 0.280 1
12 ccc 0.398 2
13 ccc 0.625 3
14 ccc 0.763 4
15 ccc 0.882 5