J'utilise fréquemment des graphiques de densité de noyau pour illustrer les distributions. Ceux-ci sont faciles et rapides à créer dans R comme ceci:
set.seed(1)
draws <- rnorm(100)^2
dens <- density(draws)
plot(dens)
#or in one line like this: plot(density(rnorm(100)^2))
Ce qui me donne ce joli petit PDF:
Je voudrais ombrer la zone sous la PDF du 75e au 95e centile. Il est facile de calculer les points en utilisant la fonction quantile
:
q75 <- quantile(draws, .75)
q95 <- quantile(draws, .95)
Mais comment ombrer la zone entre q75
et q95
?
Avec la fonction polygon()
, consultez sa page d'aide et je pense que nous avons eu des questions similaires ici aussi.
Vous devez trouver l'index des valeurs quantiles pour obtenir les paires (x,y)
Réelles.
Modifier: Et voilà:
x1 <- min(which(dens$x >= q75))
x2 <- max(which(dens$x < q95))
with(dens, polygon(x=c(x[c(x1,x1:x2,x2)]), y= c(0, y[x1:x2], 0), col="gray"))
Sortie (ajoutée par JDL)
Une autre solution:
dd <- with(dens,data.frame(x,y))
library(ggplot2)
qplot(x,y,data=dd,geom="line")+
geom_ribbon(data=subset(dd,x>q75 & x<q95),aes(ymax=y),ymin=0,
fill="red",colour=NA,alpha=0.5)
Résultat:
Une solution élargie:
Si vous souhaitez ombrer les deux queues (copier-coller du code de Dirk) et utiliser des valeurs x connues:
set.seed(1)
draws <- rnorm(100)^2
dens <- density(draws)
plot(dens)
q2 <- 2
q65 <- 6.5
qn08 <- -0.8
qn02 <- -0.2
x1 <- min(which(dens$x >= q2))
x2 <- max(which(dens$x < q65))
x3 <- min(which(dens$x >= qn08))
x4 <- max(which(dens$x < qn02))
with(dens, polygon(x=c(x[c(x1,x1:x2,x2)]), y= c(0, y[x1:x2], 0), col="gray"))
with(dens, polygon(x=c(x[c(x3,x3:x4,x4)]), y= c(0, y[x3:x4], 0), col="gray"))
Résultat:
Cette question nécessite une réponse lattice
. En voici une très basique, en adaptant simplement la méthode employée par Dirk et d'autres:
#Set up the data
set.seed(1)
draws <- rnorm(100)^2
dens <- density(draws)
#Put in a simple data frame
d <- data.frame(x = dens$x, y = dens$y)
#Define a custom panel function;
# Options like color don't need to be hard coded
shadePanel <- function(x,y,shadeLims){
panel.lines(x,y)
m1 <- min(which(x >= shadeLims[1]))
m2 <- max(which(x <= shadeLims[2]))
tmp <- data.frame(x1 = x[c(m1,m1:m2,m2)], y1 = c(0,y[m1:m2],0))
panel.polygon(tmp$x1,tmp$y1,col = "blue")
}
#Plot
xyplot(y~x,data = d, panel = shadePanel, shadeLims = c(1,3))
Voici un autre ggplot2
variante basée sur une fonction qui rapproche la densité du noyau aux valeurs de données d'origine:
approxdens <- function(x) {
dens <- density(x)
f <- with(dens, approxfun(x, y))
f(x)
}
L'utilisation des données d'origine (plutôt que de produire un nouveau bloc de données avec les valeurs x et y de l'estimation de densité) présente l'avantage de travailler également dans des tracés à facettes où les valeurs quantiles dépendent de la variable selon laquelle les données sont regroupées:
Code utilisé
library(tidyverse)
library(RColorBrewer)
# dummy data
set.seed(1)
n <- 1e2
dt <- tibble(value = rnorm(n)^2)
# function that approximates the density at the provided values
approxdens <- function(x) {
dens <- density(x)
f <- with(dens, approxfun(x, y))
f(x)
}
probs <- c(0.75, 0.95)
dt <- dt %>%
mutate(dy = approxdens(value), # calculate density
p = percent_rank(value), # percentile rank
pcat = as.factor(cut(p, breaks = probs, # percentile category based on probs
include.lowest = TRUE)))
ggplot(dt, aes(value, dy)) +
geom_ribbon(aes(ymin = 0, ymax = dy, fill = pcat)) +
geom_line() +
scale_fill_brewer(guide = "none") +
theme_bw()
# dummy data with 2 groups
dt2 <- tibble(category = c(rep("A", n), rep("B", n)),
value = c(rnorm(n)^2, rnorm(n, mean = 2)))
dt2 <- dt2 %>%
group_by(category) %>%
mutate(dy = approxdens(value),
p = percent_rank(value),
pcat = as.factor(cut(p, breaks = probs,
include.lowest = TRUE)))
# faceted plot
ggplot(dt2, aes(value, dy)) +
geom_ribbon(aes(ymin = 0, ymax = dy, fill = pcat)) +
geom_line() +
facet_wrap(~ category, nrow = 2, scales = "fixed") +
scale_fill_brewer(guide = "none") +
theme_bw()
Créé le 2018-07-13 par le package reprex (v0.2.0).