J'ai des données d'un sondage en ligne où les répondants passent par une boucle de questions 1 à 3 fois. Le logiciel de sondage (Qualtrics) enregistre ces données sur plusieurs colonnes. En d'autres termes, la Q3.2 du sondage contiendra les colonnes Q3.2.1.
, Q3.2.2.
et Q3.2.3.
:
df <- data.frame(
id = 1:10,
time = as.Date('2009-01-01') + 0:9,
Q3.2.1. = rnorm(10, 0, 1),
Q3.2.2. = rnorm(10, 0, 1),
Q3.2.3. = rnorm(10, 0, 1),
Q3.3.1. = rnorm(10, 0, 1),
Q3.3.2. = rnorm(10, 0, 1),
Q3.3.3. = rnorm(10, 0, 1)
)
# Sample data
id time Q3.2.1. Q3.2.2. Q3.2.3. Q3.3.1. Q3.3.2. Q3.3.3.
1 1 2009-01-01 -0.2059165 -0.29177677 -0.7107192 1.52718069 -0.4484351 -1.21550600
2 2 2009-01-02 -0.1981136 -1.19813815 1.1750200 -0.40380049 -1.8376094 1.03588482
3 3 2009-01-03 0.3514795 -0.27425539 1.1171712 -1.02641801 -2.0646661 -0.35353058
...
Je souhaite combiner toutes les colonnes QN.N * en colonnes QN.N individuelles bien rangées pour aboutir à un résultat similaire à celui-ci:
id time loop_number Q3.2 Q3.3
1 1 2009-01-01 1 -0.20591649 1.52718069
2 2 2009-01-02 1 -0.19811357 -0.40380049
3 3 2009-01-03 1 0.35147949 -1.02641801
...
11 1 2009-01-01 2 -0.29177677 -0.4484351
12 2 2009-01-02 2 -1.19813815 -1.8376094
13 3 2009-01-03 2 -0.27425539 -2.0646661
...
21 1 2009-01-01 3 -0.71071921 -1.21550600
22 2 2009-01-02 3 1.17501999 1.03588482
23 3 2009-01-03 3 1.11717121 -0.35353058
...
La bibliothèque tidyr
a la fonction gather()
, qui fonctionne très bien pour combiner n ensemble de colonnes:
library(dplyr)
library(tidyr)
library(stringr)
df %>% gather(loop_number, Q3.2, starts_with("Q3.2")) %>%
mutate(loop_number = str_sub(loop_number,-2,-2)) %>%
select(id, time, loop_number, Q3.2)
id time loop_number Q3.2
1 1 2009-01-01 1 -0.20591649
2 2 2009-01-02 1 -0.19811357
3 3 2009-01-03 1 0.35147949
...
29 9 2009-01-09 3 -0.58581232
30 10 2009-01-10 3 -2.33393981
La trame de données résultante a 30 lignes, comme prévu (10 individus, 3 boucles chacun). Toutefois, la collecte d’un deuxième ensemble de colonnes ne fonctionne pas correctement. Les deux colonnes combinées Q3.2
et Q3.3
sont combinées, mais se terminent avec 90 lignes au lieu de 30 (toutes les combinaisons de 10 individus, 3 boucles). de Q3.2 et 3 boucles de Q3.3; les combinaisons augmenteront considérablement pour chaque groupe de colonnes des données réelles):
df %>% gather(loop_number, Q3.2, starts_with("Q3.2")) %>%
gather(loop_number, Q3.3, starts_with("Q3.3")) %>%
mutate(loop_number = str_sub(loop_number,-2,-2))
id time loop_number Q3.2 Q3.3
1 1 2009-01-01 1 -0.20591649 1.52718069
2 2 2009-01-02 1 -0.19811357 -0.40380049
3 3 2009-01-03 1 0.35147949 -1.02641801
...
89 9 2009-01-09 3 -0.58581232 -0.13187024
90 10 2009-01-10 3 -2.33393981 -0.48502131
Existe-t-il un moyen d'utiliser plusieurs appels à gather()
comme ceci, en combinant de petits sous-ensembles de colonnes tout en maintenant le nombre correct de lignes?
Cette approche me semble assez naturelle:
df %>%
gather(key, value, -id, -time) %>%
extract(key, c("question", "loop_number"), "(Q.\\..)\\.(.)") %>%
spread(question, value)
Rassemblez d’abord toutes les colonnes de questions, utilisez extract()
pour séparer question
et loop_number
, puis spread()
questionnez dans les colonnes.
#> id time loop_number Q3.2 Q3.3
#> 1 1 2009-01-01 1 0.142259203 -0.35842736
#> 2 1 2009-01-01 2 0.061034802 0.79354061
#> 3 1 2009-01-01 3 -0.525686204 -0.67456611
#> 4 2 2009-01-02 1 -1.044461185 -1.19662936
#> 5 2 2009-01-02 2 0.393808163 0.42384717
Cela pourrait être fait en utilisant reshape
. C'est possible avec dplyr
bien que.
colnames(df) <- gsub("\\.(.{2})$", "_\\1", colnames(df))
colnames(df)[2] <- "Date"
res <- reshape(df, idvar=c("id", "Date"), varying=3:8, direction="long", sep="_")
row.names(res) <- 1:nrow(res)
head(res)
# id Date time Q3.2 Q3.3
#1 1 2009-01-01 1 1.3709584 0.4554501
#2 2 2009-01-02 1 -0.5646982 0.7048373
#3 3 2009-01-03 1 0.3631284 1.0351035
#4 4 2009-01-04 1 0.6328626 -0.6089264
#5 5 2009-01-05 1 0.4042683 0.5049551
#6 6 2009-01-06 1 -0.1061245 -1.7170087
Ou en utilisant dplyr
library(tidyr)
library(dplyr)
colnames(df) <- gsub("\\.(.{2})$", "_\\1", colnames(df))
df %>%
gather(loop_number, "Q3", starts_with("Q3")) %>%
separate(loop_number,c("L1", "L2"), sep="_") %>%
spread(L1, Q3) %>%
select(-L2) %>%
head()
# id time Q3.2 Q3.3
#1 1 2009-01-01 1.3709584 0.4554501
#2 1 2009-01-01 1.3048697 0.2059986
#3 1 2009-01-01 -0.3066386 0.3219253
#4 2 2009-01-02 -0.5646982 0.7048373
#5 2 2009-01-02 2.2866454 -0.3610573
#6 2 2009-01-02 -1.7813084 -0.7838389
Avec tidyr_0.8.3.9000
, nous pouvons utiliser pivot_longer
pour remodeler plusieurs colonnes. (Utilisation des noms de colonne modifiés à partir de gsub
ci-dessus)
library(dplyr)
library(tidyr)
df %>%
pivot_longer(cols = starts_with("Q3"),
names_to = c(".value", "Q3"), names_sep = "_") %>%
select(-Q3)
# A tibble: 30 x 4
# id time Q3.2 Q3.3
# <int> <date> <dbl> <dbl>
# 1 1 2009-01-01 0.974 1.47
# 2 1 2009-01-01 -0.849 -0.513
# 3 1 2009-01-01 0.894 0.0442
# 4 2 2009-01-02 2.04 -0.553
# 5 2 2009-01-02 0.694 0.0972
# 6 2 2009-01-02 -1.11 1.85
# 7 3 2009-01-03 0.413 0.733
# 8 3 2009-01-03 -0.896 -0.271
#9 3 2009-01-03 0.509 -0.0512
#10 4 2009-01-04 1.81 0.668
# … with 20 more rows
REMARQUE: Les valeurs sont différentes car il n’existait aucune graine définie lors de la création du jeu de données en entrée.
Avec la récente mise à jour de melt.data.table
, nous pouvons maintenant fondre plusieurs colonnes. Avec ça, on peut faire:
require(data.table) ## 1.9.5
melt(setDT(df), id=1:2, measure=patterns("^Q3.2", "^Q3.3"),
value.name=c("Q3.2", "Q3.3"), variable.name="loop_number")
# id time loop_number Q3.2 Q3.3
# 1: 1 2009-01-01 1 -0.433978480 0.41227209
# 2: 2 2009-01-02 1 -0.567995351 0.30701144
# 3: 3 2009-01-03 1 -0.092041353 -0.96024077
# 4: 4 2009-01-04 1 1.137433487 0.60603396
# 5: 5 2009-01-05 1 -1.071498263 -0.01655584
# 6: 6 2009-01-06 1 -0.048376809 0.55889996
# 7: 7 2009-01-07 1 -0.007312176 0.69872938
Vous pouvez obtenir la version de développement de ici .
Ce n'est pas du tout lié à "tidyr" et "dplyr", mais voici une autre option à considérer: merged.stack
de mon paquet "splitstackshape" , V1.4.0 et supérieur.
library(splitstackshape)
merged.stack(df, id.vars = c("id", "time"),
var.stubs = c("Q3.2.", "Q3.3."),
sep = "var.stubs")
# id time .time_1 Q3.2. Q3.3.
# 1: 1 2009-01-01 1. -0.62645381 1.35867955
# 2: 1 2009-01-01 2. 1.51178117 -0.16452360
# 3: 1 2009-01-01 3. 0.91897737 0.39810588
# 4: 2 2009-01-02 1. 0.18364332 -0.10278773
# 5: 2 2009-01-02 2. 0.38984324 -0.25336168
# 6: 2 2009-01-02 3. 0.78213630 -0.61202639
# 7: 3 2009-01-03 1. -0.83562861 0.38767161
# <<:::SNIP:::>>
# 24: 8 2009-01-08 3. -1.47075238 -1.04413463
# 25: 9 2009-01-09 1. 0.57578135 1.10002537
# 26: 9 2009-01-09 2. 0.82122120 -0.11234621
# 27: 9 2009-01-09 3. -0.47815006 0.56971963
# 28: 10 2009-01-10 1. -0.30538839 0.76317575
# 29: 10 2009-01-10 2. 0.59390132 0.88110773
# 30: 10 2009-01-10 3. 0.41794156 -0.13505460
# id time .time_1 Q3.2. Q3.3.
Si vous êtes comme moi et ne parvenez pas à utiliser "l'expression régulière avec les groupes capturés" pour extract
, le code suivant reproduit la ligne extract(...)
dans la réponse de Hadleys:
df %>%
gather(question_number, value, starts_with("Q3.")) %>%
mutate(loop_number = str_sub(question_number,-2,-2), question_number = str_sub(question_number,1,4)) %>%
select(id, time, loop_number, question_number, value) %>%
spread(key = question_number, value = value)
Le problème ici est que la collecte initiale forme une colonne clé qui est en réalité une combinaison de deux clés. J'ai choisi d'utiliser mutate
dans ma solution d'origine dans les commentaires pour scinder cette colonne en deux colonnes avec des informations équivalentes, une colonne loop_number
et une colonne question_number
. spread
peut ensuite être utilisé pour transformer les données de formulaire long, qui sont des paires de valeurs de clé (question_number, value)
en données de formulaire larges.