web-dev-qa-db-fra.com

SVM avec validation croisée en R à l'aide du curseur

On m'a dit d'utiliser le package caret afin d'effectuer une régression Support Vector Machine avec une validation croisée 10 fois sur un ensemble de données que j'ai. Je trace ma variable de réponse contre 151 variables. J'ai fait ce qui suit: -

> ctrl <- trainControl(method = "repeatedcv", repeats = 10)
> set.seed(1500)
> mod <- train(RT..seconds.~., data=cadets, method = "svmLinear", trControl = ctrl)

dans lequel j'ai

C    RMSE  Rsquared  RMSE SD  Rsquared SD
  0.2  50    0.8       20       0.1        
  0.5  60    0.7       20       0.2        
  1    60    0.7       20       0.2   

Mais je veux pouvoir jeter un œil à mes plis, et pour chacun d'eux à quel point les valeurs prédites étaient proches des valeurs réelles. Comment dois-je procéder?

En outre, il dit que: -

RMSE was used to select the optimal model using  the smallest value.
The final value used for the model was C = 0.

Je me demandais juste ce que cela signifiait et ce que représente le C dans le tableau ci-dessus?

RT (seconds)    76_TI2  114_DECC    120_Lop 212_PCD 236_X3Av
38  4.086   1.2 2.322   0   0.195
40  2.732   0.815   1.837   1.113   0.13
41  4.049   1.153   2.117   2.354   0.094
41  4.049   1.153   2.117   3.838   0.117
42  4.56    1.224   2.128   2.38    0.246
42  2.96    0.909   1.686   0.972   0.138
42  3.237   0.96    1.922   1.202   0.143
44  2.989   0.8 1.761   2.034   0.11
44  1.993   0.5 1.5 0   0.102
44  2.957   0.8 1.761   0.988   0.141
44  2.597   0.889   1.888   1.916   0.114
44  2.428   0.691   1.436   1.848   0.089

Ceci est un extrait de mon jeu de données. J'essaie de pot RT secondes contre 151 variables.

Merci

15
user2062207

Vous devez enregistrer vos prédictions de CV via l'option "savePred" dans votre objet trainControl. Je ne sais pas de quel paquet proviennent vos données "cadets", mais voici un exemple trivial utilisant l'iris:

> library(caret)
> ctrl <- trainControl(method = "cv", savePred=T, classProb=T)
> mod <- train(Species~., data=iris, method = "svmLinear", trControl = ctrl)
> head(mod$pred)
        pred        obs      setosa  versicolor   virginica rowIndex   .C Resample
1     setosa     setosa 0.982533940 0.009013592 0.008452468       11 0.25   Fold01
2     setosa     setosa 0.955755054 0.032289120 0.011955826       35 0.25   Fold01
3     setosa     setosa 0.941292675 0.044903583 0.013803742       46 0.25   Fold01
4     setosa     setosa 0.983559919 0.008310323 0.008129757       49 0.25   Fold01
5     setosa     setosa 0.972285699 0.018109218 0.009605083       50 0.25   Fold01
6 versicolor versicolor 0.007223973 0.971168170 0.021607858       59 0.25   Fold01

EDIT: Le "C" est l'un des paramètres de réglage pour votre SVM. Consultez l'aide de la fonction ksvm dans le package kernlab pour plus de détails.

EDIT2: Exemple de régression triviale

> library(caret)
> ctrl <- trainControl(method = "cv", savePred=T)
> mod <- train(Sepal.Length~., data=iris, method = "svmLinear", trControl = ctrl)
> head(mod$pred)
      pred obs rowIndex   .C Resample
1 4.756119 4.8       13 0.25   Fold01
2 4.910948 4.8       31 0.25   Fold01
3 5.094275 4.9       38 0.25   Fold01
4 4.728503 4.8       46 0.25   Fold01
5 5.192965 5.3       49 0.25   Fold01
6 5.969479 5.9       62 0.25   Fold01
19
David