web-dev-qa-db-fra.com

tarte ggplot2 et graphique en anneau sur la même parcelle

J'essaie de reproduire cela enter image description here avec R ggplot. J'ai exactement les mêmes données:

browsers<-structure(list(browser = structure(c(3L, 3L, 3L, 3L, 2L, 2L, 
2L, 1L, 5L, 5L, 4L), .Label = c("Chrome", "Firefox", "MSIE", 
"Opera", "Safari"), class = "factor"), version = structure(c(5L, 
6L, 7L, 8L, 2L, 3L, 4L, 1L, 10L, 11L, 9L), .Label = c("Chrome 10.0", 
"Firefox 3.5", "Firefox 3.6", "Firefox 4.0", "MSIE 6.0", "MSIE 7.0", 
"MSIE 8.0", "MSIE 9.0", "Opera 11.x", "Safari 4.0", "Safari 5.0"
), class = "factor"), share = c(10.85, 7.35, 33.06, 2.81, 1.58, 
13.12, 5.43, 9.91, 1.42, 4.55, 1.65), ymax = c(10.85, 18.2, 51.26, 
54.07, 55.65, 68.77, 74.2, 84.11, 85.53, 90.08, 91.73), ymin = c(0, 
10.85, 18.2, 51.26, 54.07, 55.65, 68.77, 74.2, 84.11, 85.53, 
90.08)), .Names = c("browser", "version", "share", "ymax", "ymin"
), row.names = c(NA, -11L), class = "data.frame")

et ça ressemble à ça:

> browsers
   browser      version  share   ymax   ymin
1     MSIE     MSIE 6.0  10.85  10.85   0.00
2     MSIE     MSIE 7.0   7.35  18.20  10.85
3     MSIE     MSIE 8.0  33.06  51.26  18.20
4     MSIE     MSIE 9.0   2.81  54.07  51.26
5  Firefox  Firefox 3.5   1.58  55.65  54.07
6  Firefox  Firefox 3.6  13.12  68.77  55.65
7  Firefox  Firefox 4.0   5.43  74.20  68.77
8   Chrome  Chrome 10.0   9.91  84.11  74.20
9   Safari   Safari 4.0   1.42  85.53  84.11
10  Safari   Safari 5.0   4.55  90.08  85.53
11   Opera   Opera 11.x   1.65  91.73  90.08

Jusqu'ici, j'ai tracé les composants individuels (c'est-à-dire le diagramme en anneau des versions et le diagramme à secteurs des navigateurs) comme suit:

ggplot(browsers) + geom_rect(aes(fill=version, ymax=ymax, ymin=ymin, xmax=4, xmin=3)) +
coord_polar(theta="y") + xlim(c(0, 4))

enter image description here

ggplot(browsers) + geom_bar(aes(x = factor(1), fill = browser),width = 1) +
coord_polar(theta="y")

enter image description here

Le problème est, comment puis-je combiner les deux pour ressembler à l'image la plus haute? J'ai essayé de nombreuses manières, telles que:

ggplot(browsers) + geom_rect(aes(fill=version, ymax=ymax, ymin=ymin, xmax=4, xmin=3)) +         geom_bar(aes(x = factor(1), fill = browser),width = 1) + coord_polar(theta="y") + xlim(c(0, 4)) 

Mais tous mes résultats sont tordus ou se terminent par un message d'erreur.

28
Tavi

Je trouve plus facile de commencer par travailler en coordonnées rectangulaires, puis de passer aux coordonnées polaires lorsque cela est correct. La coordonnée x devient rayon en polaire. Ainsi, en coordonnées rectangulaires, le tracé intérieur va de zéro à un nombre, comme 3, et la bande extérieure, de 3 à 4.

Par exemple

ggplot(browsers) + 
  geom_rect(aes(fill=version, ymax=ymax, ymin=ymin, xmax=4, xmin=3)) +
  geom_rect(aes(fill=browser, ymax=ymax, ymin=ymin, xmax=3, xmin=0)) +
  xlim(c(0, 4)) + 
  theme(aspect.ratio=1) 

enter image description here

Ensuite, lorsque vous passez en mode polaire, vous obtenez quelque chose comme ce que vous recherchez.

ggplot(browsers) + 
  geom_rect(aes(fill=version, ymax=ymax, ymin=ymin, xmax=4, xmin=3)) +
  geom_rect(aes(fill=browser, ymax=ymax, ymin=ymin, xmax=3, xmin=0)) +
  xlim(c(0, 4)) + 
  theme(aspect.ratio=1) +
  coord_polar(theta="y")  

enter image description here

C’est un début, mais vous devrez peut-être affiner la dépendance sur y (ou angle) et également déterminer l’étiquetage/la légende/la coloration ... En utilisant rect pour les bagues intérieure et extérieure, cela simplifiera le réglage de la coloration. En outre, il peut être utile d’utiliser la fonction reshape2 :: melt pour réorganiser les données afin que la légende soit correcte en utilisant un groupe (ou une couleur).

19
user3969377

Edit 2

Ma réponse initiale est vraiment stupide. Voici une version beaucoup plus courte qui fait le gros du travail avec une interface beaucoup plus simple.

#' x      numeric vector for each slice
#' group  vector identifying the group for each slice
#' labels vector of labels for individual slices
#' col    colors for each group
#' radius radius for inner and outer pie (usually in [0,1])

donuts <- function(x, group = 1, labels = NA, col = NULL, radius = c(.7, 1)) {
  group <- rep_len(group, length(x))
  ug  <- unique(group)
  tbl <- table(group)[order(ug)]

  col <- if (is.null(col))
    seq_along(ug) else rep_len(col, length(ug))
  col.main <- Map(rep, col[seq_along(tbl)], tbl)
  col.sub  <- lapply(col.main, function(x) {
    al <- head(seq(0, 1, length.out = length(x) + 2L)[-1L], -1L)
    Vectorize(adjustcolor)(x, alpha.f = al)
  })

  plot.new()

  par(new = TRUE)
  pie(x, border = NA, radius = radius[2L],
      col = unlist(col.sub), labels = labels)

  par(new = TRUE)
  pie(x, border = NA, radius = radius[1L],
      col = unlist(col.main), labels = NA)
}

par(mfrow = c(1,2), mar = c(0,4,0,4))
with(browsers,
     donuts(share, browser, sprintf('%s: %s%%', version, share),
            col = c('cyan2','red','orange','green','dodgerblue2'))
)

with(mtcars,
     donuts(mpg, interaction(gear, cyl), rownames(mtcars))
)

 enter image description here


Message original

Vous n'avez pas la fonction givemedonutsorgivemedeath? Les graphiques de base sont toujours la solution idéale pour des choses très détaillées comme celle-ci. Impossible de trouver un moyen élégant de tracer les étiquettes de la tarte centrale, cependant.

givemedonutsorgivemedeath('~/desktop/donuts.pdf') 

Donne moi

enter image description here

Notez que dans ?pie vous voyez

Pie charts are a very bad way of displaying information.

code:

browsers <- structure(list(browser = structure(c(3L, 3L, 3L, 3L, 2L, 2L, 
  2L, 1L, 5L, 5L, 4L), .Label = c("Chrome", "Firefox", "MSIE", 
  "Opera", "Safari"), class = "factor"), version = structure(c(5L, 
  6L, 7L, 8L, 2L, 3L, 4L, 1L, 10L, 11L, 9L), .Label = c("Chrome 10.0", 
  "Firefox 3.5", "Firefox 3.6", "Firefox 4.0", "MSIE 6.0", "MSIE 7.0", 
  "MSIE 8.0", "MSIE 9.0", "Opera 11.x", "Safari 4.0", "Safari 5.0"), 
  class = "factor"), share = c(10.85, 7.35, 33.06, 2.81, 1.58, 
  13.12, 5.43, 9.91, 1.42, 4.55, 1.65), ymax = c(10.85, 18.2, 51.26, 
  54.07, 55.65, 68.77, 74.2, 84.11, 85.53, 90.08, 91.73), ymin = c(0, 
  10.85, 18.2, 51.26, 54.07, 55.65, 68.77, 74.2, 84.11, 85.53, 
  90.08)), .Names = c("browser", "version", "share", "ymax", "ymin"),
  row.names = c(NA, -11L), class = "data.frame")

browsers$total <- with(browsers, ave(share, browser, FUN = sum))

givemedonutsorgivemedeath <- function(file, width = 15, height = 11) {
  ## house keeping 
  if (missing(file)) file <- getwd()
  plot.new(); op <- par(no.readonly = TRUE); on.exit(par(op))

  pdf(file, width = width, height = height, bg = 'snow')

  ## useful values and colors to work with
  ## each group will have a specific color
  ## each subgroup will have a specific shade of that color
  nr <- nrow(browsers)
  width <- max(sqrt(browsers$share)) / 0.8

  tbl <- with(browsers, table(browser)[order(unique(browser))])
  cols <- c('cyan2','red','orange','green','dodgerblue2')
  cols <- unlist(Map(rep, cols, tbl))

  ## loop creates pie slices
  plot.new()
  par(omi = c(0.5,0.5,0.75,0.5), mai = c(0.1,0.1,0.1,0.1), las = 1)
  for (i in 1:nr) {
    par(new = TRUE)

    ## create color/shades
    rgb <- col2rgb(cols[i])
    f0 <- rep(NA, nr)
    f0[i] <- rgb(rgb[1], rgb[2], rgb[3], 190 / sequence(tbl)[i], maxColorValue = 255)

    ## stick labels on the outermost section
    lab <- with(browsers, sprintf('%s: %s', version, share))
    if (with(browsers, share[i] == max(share))) {
      lab0 <- lab
    } else lab0 <- NA

    ## plot the outside pie and shades of subgroups
    pie(browsers$share, border = NA, radius = 5 / width, col = f0, 
        labels = lab0, cex = 1.8)

    ## repeat above for the main groups
    par(new = TRUE)
    rgb <- col2rgb(cols[i])
    f0[i] <- rgb(rgb[1], rgb[2], rgb[3], maxColorValue = 255)

    pie(browsers$share, border = NA, radius = 4 / width, col = f0, labels = NA)
  }

  ## extra labels on graph

  ## center labels, guess and check?
  text(x = c(-.05, -.05, 0.15, .25, .3), y = c(.08, -.12, -.15, -.08, -.02), 
       labels = unique(browsers$browser), col = 'white', cex = 1.2)

  mtext('Browser market share, April 2011', side = 3, line = -1, adj = 0, 
        cex = 3.5, outer = TRUE)
  mtext('stackoverflow.com:::maryam', side = 3, line = -3.6, adj = 0,
        cex = 1.75, outer = TRUE, font = 3)
  mtext('/questions/26748069/ggplot2-pie-and-donut-chart-on-same-plot',
        side = 1, line = 0, adj = 1.0, cex = 1.2, outer = TRUE, font = 3)
  dev.off()
}

givemedonutsorgivemedeath('~/desktop/donuts.pdf')

Modifier 1

width <- 5

tbl <- table(browsers$browser)[order(unique(browsers$browser))]
col.main <- Map(rep, seq_along(tbl), tbl)
col.sub  <- lapply(col.main, function(x)
  Vectorize(adjustcolor)(x, alpha.f = seq_along(x) / length(x)))

plot.new()

par(new = TRUE)
pie(browsers$share, border = NA, radius = 5 / width,
    col = unlist(col.sub), labels = browsers$version)

par(new = TRUE)
pie(browsers$share, border = NA, radius = 4 / width,
    col = unlist(col.main), labels = NA)
31
rawr

J'ai créé une fonction d'intrigue de beignets à usage général pour le faire, ce qui pourrait 

  • Tracez un diagramme en anneau, c’est-à-dire dessinez un diagramme à secteurs pour panel et colorisez chaque secteur circulaire en pourcentage donné pctr et colors cols. La largeur de l'anneau peut être ajustée par outradius> radius> innerradius
  • Superposer plusieurs parcelles en anneau ensemble.

En fait, la fonction principale dessine un graphique à barres et la plie en un anneau. Il s’agit donc d’un point situé entre un graphique à secteurs et un graphique à barres.

Exemple de camembert, deux anneaux:

 Pie 1

Graphique circulaire du navigateur

 Pie 2

donuts_plot <- function(
                        panel = runif(3), # counts
                        pctr = c(.5,.2,.9), # percentage in count
                        legend.label='',
                        cols = c('chartreuse', 'chocolate','deepskyblue'), # colors
                        outradius = 1, # outter radius
                        radius = .7,   # 1-width of the donus 
                        add = F,
                        innerradius = .5, # innerradius, if innerradius==innerradius then no suggest line
                        legend = F,
                        pilabels=F,
                        legend_offset=.25, # non-negative number, legend right position control
                        borderlit=c(T,F,T,T)
                        ){
    par(new=add)
    if(sum(legend.label=='')>=1) legend.label=paste("Series",1:length(pctr))
    if(pilabels){
        pie(panel, col=cols,border = borderlit[1],labels = legend.label,radius = outradius)
    }
    panel = panel/sum(panel)

    pctr2= panel*(1 - pctr)
    pctr3 = c(pctr,pctr)
    pctr_indx=2*(1:length(pctr))
    pctr3[pctr_indx]=pctr2
    pctr3[-pctr_indx]=panel*pctr
    cols_fill = c(cols,cols)
    cols_fill[pctr_indx]='white'
    cols_fill[-pctr_indx]=cols
    par(new=TRUE)
    pie(pctr3, col=cols_fill,border = borderlit[2],labels = '',radius = outradius)
    par(new=TRUE)
    pie(panel, col='white',border = borderlit[3],labels = '',radius = radius)
    par(new=TRUE)
    pie(1, col='white',border = borderlit[4],labels = '',radius = innerradius)
    if(legend){
        # par(mar=c(5.2, 4.1, 4.1, 8.2), xpd=TRUE)
        legend("topright",inset=c(-legend_offset,0),legend=legend.label, pch=rep(15,'.',length(pctr)), 
               col=cols,bty='n')
    }
    par(new=FALSE)
}
## col- > subcor(change hue/alpha)
subcolors <- function(.dta,main,mainCol){
    tmp_dta = cbind(.dta,1,'col')
    tmp1 = unique(.dta[[main]])
    for (i in 1:length(tmp1)){
        tmp_dta$"col"[.dta[[main]] == tmp1[i]] = mainCol[i]
    }
    u <- unlist(by(tmp_dta$"1",tmp_dta[[main]],cumsum))
    n <- dim(.dta)[1]
    subcol=rep(rgb(0,0,0),n);
    for(i in 1:n){
        t1 = col2rgb(tmp_dta$col[i])/256
        subcol[i]=rgb(t1[1],t1[2],t1[3],1/(1+u[i]))
    }
    return(subcol);
}
### Then get the plot is fairly easy:
# INPUT data
browsers <- structure(list(browser = structure(c(3L, 3L, 3L, 3L, 2L, 2L, 
                                                 2L, 1L, 5L, 5L, 4L), 
                                               .Label = c("Chrome", "Firefox", "MSIE","Opera", "Safari"),class = "factor"), 
                           version = structure(c(5L,6L, 7L, 8L, 2L, 3L, 4L, 1L, 10L, 11L, 9L), 
                                               .Label = c("Chrome 10.0", "Firefox 3.5", "Firefox 3.6", "Firefox 4.0", "MSIE 6.0", 
                                                          "MSIE 7.0","MSIE 8.0", "MSIE 9.0", "Opera 11.x", "Safari 4.0", "Safari 5.0"),
                                               class = "factor"), 
                           share = c(10.85, 7.35, 33.06, 2.81, 1.58,13.12, 5.43, 9.91, 1.42, 4.55, 1.65), 
                           ymax = c(10.85, 18.2, 51.26,54.07, 55.65, 68.77, 74.2, 84.11, 85.53, 90.08, 91.73), 
                           ymin = c(0,10.85, 18.2, 51.26, 54.07, 55.65, 68.77, 74.2, 84.11, 85.53,90.08)),
                      .Names = c("browser", "version", "share", "ymax", "ymin"),
                      row.names = c(NA, -11L), class = "data.frame")
## data clean
browsers=browsers[order(browsers$browser,browsers$share),]
arr=aggregate(share~browser,browsers,sum)
### choose your cols
mainCol =  c('chartreuse3', 'chocolate3','deepskyblue3','gold3','deeppink3')
donuts_plot(browsers$share,rep(1,11),browsers$version,
        cols=subcolors(browsers,"browser",mainCol),
        legend=F,pilabels = T,borderlit = rep(F,4) )
donuts_plot(arr$share,rep(1,5),arr$browser,
        cols=mainCol,pilabels=F,legend=T,legend_offset=-.02,
        outradius = .71,radius = .0,innerradius=.0,add=T,
        borderlit = rep(F,4) )
###end of line
6
yfyang

La solution de @ rawr est vraiment agréable, cependant, les étiquettes se chevaucheront s'il y en a trop. Inspiré par @ user3969377 et @FlorianGD , j'ai obtenu une nouvelle solution utilisant ggplot2 et ggrepel.

1. préparer les données

browsers$ymax <- cumsum(browsers$share) # fed to geom_rect() in piedonut()
browsers$ymin <- browsers$ymax - browsers$share # fed to geom_rect() in piedonut()

browsers$share_browser <- sum(browsers$share[browsers$browser == unique(browsers$browser)[1]]) # "_browser" means at browser level
browsers$ymax_browser <- browsers$share_browser[browsers$browser == unique(browsers$browser)[1]][1]
for (z in 2:length(unique(browsers$browser))) {
  browsers$share_browser[browsers$browser == unique(browsers$browser)[z]] <- sum(browsers$share[browsers$browser == unique(browsers$browser)[z]])
  browsers$ymax_browser[browsers$browser == unique(browsers$browser)[z]] <- browsers$ymax_browser[browsers$browser == unique(browsers$browser)[z-1]][1] + browsers$share_browser[browsers$browser == unique(browsers$browser)[z]][1]
}
browsers$ymin_browser <- browsers$ymax_browser - browsers$share_browser

2. écrire la fonction pied de noix

piedonut <- function(data, cols = c('cyan2','red','orange','green','dodgerblue2'), force = 80, Nudge_x = 3, Nudge_y = 10) { # force, Nudge_x, Nudge_y are parameters to fine tune positions of the labels by geom_label_repel.
  nr <- nrow(data)
  # width <- max(sqrt(data$share)) / 0.1

  tbl <- with(data, table(browser)[order(unique(browser))])
  cols <- unlist(Map(rep, cols, tbl))
  col_subnum <- unlist(Map(rep, 255/tbl,tbl))

  col <- rep(NA, nr)
  col_browser <- rep(NA, nr)
  for (i in 1:nr) {
    ## create color/shades
    rgb <- col2rgb(cols[i])
    col[i] <- rgb(rgb[1], rgb[2], rgb[3],  col_subnum[i]*sequence(tbl)[i], maxColorValue = 255)

    rgb <- col2rgb(cols[i])
    col_browser[i] <- rgb(rgb[1], rgb[2], rgb[3], maxColorValue = 255)
  }
  #col
  # set labels positions
  x.breaks <- seq(1, 1.8, length.out = nr)
  y.breaks <- cumsum(data$share)-data$share/2
  ggplot(data) +
    geom_rect(aes(ymax = ymax, ymin = ymin, xmax=4, xmin=1), fill=col) +
    geom_rect(aes(ymax=ymax_browser, ymin=ymin_browser, xmax=1, xmin=0), fill=col_browser) +
    coord_polar(theta = 'y') +
    theme(axis.ticks = element_blank(),
          axis.title = element_blank(),
          axis.text = element_blank(),
          panel.grid = element_blank(),
          panel.background = element_blank()) +
    geom_label_repel(aes(x = x.breaks, y = y.breaks, label = sprintf("%s: %s%%",data$version, data$share)),
                     force = force,
                     Nudge_x = Nudge_x,
                     Nudge_y = Nudge_y)
}

3. obtenir le piedonut

cols <- c('cyan2','red','orange','green','dodgerblue2')

pdf('~/Downloads/donuts.pdf', width = 10, height = 10, bg = "snow")
par(omi = c(0.5,0.5,0.75,0.5), mai = c(0.1,0.1,0.1,0.1), las = 1)
print(piedonut(data = browsers, cols = cols, force = 80, Nudge_x = 3, Nudge_y = 10))
dev.off()

 enter image description here

1
CcMango

vous pouvez obtenir quelque chose de similaire en utilisant le paquet ggsunburst

# using your data without "ymax" and "ymin"
browsers <- structure(list(browser = structure(c(3L, 3L, 3L, 3L, 2L, 2L,
2L, 1L, 5L, 5L, 4L), .Label = c("Chrome", "Firefox", "MSIE",
"Opera", "Safari"), class = "factor"), version = structure(c(5L,
6L, 7L, 8L, 2L, 3L, 4L, 1L, 10L, 11L, 9L), .Label = c("Chrome 10.0",
"Firefox 3.5", "Firefox 3.6", "Firefox 4.0", "MSIE 6.0", "MSIE 7.0",
"MSIE 8.0", "MSIE 9.0", "Opera 11.x", "Safari 4.0", "Safari 5.0"
), class = "factor"), share = c(10.85, 7.35, 33.06, 2.81, 1.58,
13.12, 5.43, 9.91, 1.42, 4.55, 1.65)), .Names = c("parent", "node", "size")
, row.names = c(NA, -11L), class = "data.frame")

# add column browser to be used for colouring
browsers$browser <- browsers$parent

# write data.frame into csv file
write.table(browsers, file = 'browsers.csv', row.names = F, sep = ",")

# install ggsunburst
if (!require("ggplot2")) install.packages("ggplot2")
if (!require("rPython")) install.packages("rPython")
install.packages("http://genome.crg.es/~didac/ggsunburst/ggsunburst_0.0.9.tar.gz", repos=NULL, type="source")
library(ggsunburst)

# generate data structure
sb <- sunburst_data('browsers.csv', type = 'node_parent', sep = ",", node_attributes = c("browser","size"))

# add name as browser attribute for colouring to internal nodes
sb$rects[!sb$rects$leaf,]$browser <- sb$rects[!sb$rects$leaf,]$name

# plot adding geom_text layer for showing the "size" value
p <- sunburst(sb, rects.fill.aes = "browser", node_labels = T, node_labels.min = 15)
p + geom_text(data = sb$leaf_labels,
    aes(x=x, y=0.1, label=paste(size,"%"), angle=angle, hjust=hjust), size = 2)

 enter image description here

1
didac

J'ai utilisé floating.pie au lieu de ggplot2 pour créer deux graphiques à secteurs se chevauchant:

library(plotrix)

# browser data without "ymax" and "ymin"
browsers <-
    structure(
        list(
            browser = structure(
                c(3L, 3L, 3L, 3L, 2L, 2L,
                  2L, 1L, 5L, 5L, 4L),
                .Label = c("Chrome", "Firefox", "MSIE",
                           "Opera", "Safari"),
                class = "factor"
            ),
            version = structure(
                c(5L,
                  6L, 7L, 8L, 2L, 3L, 4L, 1L, 10L, 11L, 9L),
                .Label = c(
                    "Chrome 10.0",
                    "Firefox 3.5",
                    "Firefox 3.6",
                    "Firefox 4.0",
                    "MSIE 6.0",
                    "MSIE 7.0",
                    "MSIE 8.0",
                    "MSIE 9.0",
                    "Opera 11.x",
                    "Safari 4.0",
                    "Safari 5.0"
                ),
                class = "factor"
            ),
            share = c(10.85, 7.35, 33.06, 2.81, 1.58,
                      13.12, 5.43, 9.91, 1.42, 4.55, 1.65)
        ),
        .Names = c("parent", "node", "size")
        ,
        row.names = c(NA,-11L),
        class = "data.frame"
    )

# aggregate data for the browser pie chart
browser_data <-
    aggregate(browsers$share,
              by = list(browser = browsers$browser),
              FUN = sum)

# order version data by browser so it will line up with browser pie chart
version_data <- browsers[order(browsers$browser), ]

browser_colors <- c('#85EA72', '#3B3B3F', '#71ACE9', '#747AE6', '#F69852')

# adjust these as desired (currently colors all versions the same as browser)
version_colors <-
    c(
        '#85EA72',
        '#3B3B3F',
        '#3B3B3F',
        '#3B3B3F',
        '#71ACE9',
        '#71ACE9',
        '#71ACE9',
        '#71ACE9',
        '#747AE6',
        '#F69852',
        '#F69852'
    )

# format labels to display version and % market share
version_labels <- paste(version_data$version, ": ", version_data$share, "%", sep = "")

# coordinates for the center of the chart
center_x <- 0.5
center_y <- 0.5

plot.new()

# draw version pie chart first
version_chart <-
    floating.pie(
        xpos = center_x,
        ypos = center_y,
        x = version_data$share,
        radius = 0.35,
        border = "white",
        col = version_colors
    )

# add labels for version pie chart
pie.labels(
    x = center_x,
    y = center_y,
    angles = version_chart,
    labels = version_labels,
    radius = 0.38,
    bg = NULL,
    cex = 0.8,
    font = 2,
    col = "gray40"
)

# overlay browser pie chart
browser_chart <-
    floating.pie(
        xpos = center_x,
        ypos = center_y,
        x = browser_data$x,
        radius = 0.25,
        border = "white",
        col = browser_colors
    )

# add labels for browser pie chart
pie.labels(
    x = center_x,
    y = center_y,
    angles = browser_chart,
    labels = browser_data$browser,
    radius = 0.125,
    bg = NULL,
    cex = 0.8,
    font = 2,
    col = "white"
)

 Overlapping pie charts using floating.pie

0
LeilaHC