web-dev-qa-db-fra.com

Tracer le biplot pca avec ggplot2

Je me demande s'il est possible de tracer des résultats de biplot pca avec ggplot2. Supposons que je veuille afficher les résultats de biplot suivants avec ggplot2

fit <- princomp(USArrests, cor=TRUE)
summary(fit)
biplot(fit)

Toute aide sera grandement appréciée. Merci

28
MYaseen208

Peut-être que cela aidera - il est adapté du code que j'ai écrit il y a quelque temps. Il dessine désormais également des flèches.

PCbiplot <- function(PC, x="PC1", y="PC2") {
    # PC being a prcomp object
    data <- data.frame(obsnames=row.names(PC$x), PC$x)
    plot <- ggplot(data, aes_string(x=x, y=y)) + geom_text(alpha=.4, size=3, aes(label=obsnames))
    plot <- plot + geom_hline(aes(0), size=.2) + geom_vline(aes(0), size=.2)
    datapc <- data.frame(varnames=rownames(PC$rotation), PC$rotation)
    mult <- min(
        (max(data[,y]) - min(data[,y])/(max(datapc[,y])-min(datapc[,y]))),
        (max(data[,x]) - min(data[,x])/(max(datapc[,x])-min(datapc[,x])))
        )
    datapc <- transform(datapc,
            v1 = .7 * mult * (get(x)),
            v2 = .7 * mult * (get(y))
            )
    plot <- plot + coord_equal() + geom_text(data=datapc, aes(x=v1, y=v2, label=varnames), size = 5, vjust=1, color="red")
    plot <- plot + geom_segment(data=datapc, aes(x=0, y=0, xend=v1, yend=v2), arrow=arrow(length=unit(0.2,"cm")), alpha=0.75, color="red")
    plot
}

fit <- prcomp(USArrests, scale=T)
PCbiplot(fit)

Vous voudrez peut-être changer la taille du texte, ainsi que la transparence et les couleurs, au goût; il serait facile d'en faire des paramètres de la fonction. Remarque: il m'est venu à l'esprit que cela fonctionne avec prcomp mais votre exemple est avec princomp. Vous devrez peut-être, encore une fois, adapter le code en conséquence. Note2: le code de geom_segment() est emprunté à la publication de la liste de diffusion liée du commentaire à l'OP.

PC biplot

50
crayola

Voici le chemin le plus simple à travers ggbiplot:

library(ggbiplot)
fit <- princomp(USArrests, cor=TRUE)
biplot(fit)

enter image description here

ggbiplot(fit, labels =  rownames(USArrests))

enter image description here

20
MYaseen208

Si vous utilisez l'excellent package FactoMineR pour pca, cela peut vous être utile pour créer des tracés avec ggplot2

# Plotting the output of FactoMineR's PCA using ggplot2
#
# load libraries
library(FactoMineR)
library(ggplot2)
library(scales)
library(grid)
library(plyr)
library(gridExtra)
#
# start with a clean slate
rm(list=ls(all=TRUE)) 
#
# load example data from the FactoMineR package
data(decathlon)
#
# compute PCA
res.pca <- PCA(decathlon, quanti.sup = 11:12, quali.sup=13, graph = FALSE)
#
# extract some parts for plotting
PC1 <- res.pca$ind$coord[,1]
PC2 <- res.pca$ind$coord[,2]
labs <- rownames(res.pca$ind$coord)
PCs <- data.frame(cbind(PC1,PC2))
rownames(PCs) <- labs
#
# Just showing the individual samples...
ggplot(PCs, aes(PC1,PC2, label=rownames(PCs))) + 
  geom_text() 
#
# Now get supplementary categorical variables
cPC1 <- res.pca$quali.sup$coor[,1]
cPC2 <- res.pca$quali.sup$coor[,2]
clabs <- rownames(res.pca$quali.sup$coor)
cPCs <- data.frame(cbind(cPC1,cPC2))
rownames(cPCs) <- clabs
colnames(cPCs) <- colnames(PCs)
#
# Put samples and categorical variables (ie. grouping
# of samples) all together
p <- ggplot() + opts(aspect.ratio=1) + theme_bw(base_size = 20) 
# no data so there's nothing to plot...
# add on data 
p <- p + geom_text(data=PCs, aes(x=PC1,y=PC2,label=rownames(PCs)), size=4) 
p <- p + geom_text(data=cPCs, aes(x=cPC1,y=cPC2,label=rownames(cPCs)),size=10)
p # show plot with both layers
#
# clear the plot
dev.off()
#
# Now extract variables
#
vPC1 <- res.pca$var$coord[,1]
vPC2 <- res.pca$var$coord[,2]
vlabs <- rownames(res.pca$var$coord)
vPCs <- data.frame(cbind(vPC1,vPC2))
rownames(vPCs) <- vlabs
colnames(vPCs) <- colnames(PCs)
#
# and plot them
#
pv <- ggplot() + opts(aspect.ratio=1) + theme_bw(base_size = 20) 
# no data so there's nothing to plot
# put a faint circle there, as is customary
angle <- seq(-pi, pi, length = 50) 
df <- data.frame(x = sin(angle), y = cos(angle)) 
pv <- pv + geom_path(aes(x, y), data = df, colour="grey70") 
#
# add on arrows and variable labels
pv <- pv + geom_text(data=vPCs, aes(x=vPC1,y=vPC2,label=rownames(vPCs)), size=4) + xlab("PC1") + ylab("PC2")
pv <- pv + geom_segment(data=vPCs, aes(x = 0, y = 0, xend = vPC1*0.9, yend = vPC2*0.9), arrow = arrow(length = unit(1/2, 'picas')), color = "grey30")
pv # show plot 
#
# clear the plot
dev.off()
#
# Now put them side by side
#
library(gridExtra)
grid.arrange(p,pv,nrow=1)
# 
# Now they can be saved or exported...
#
# tidy up by deleting the plots
#
dev.off()

Et voici à quoi ressemble le tracé final, peut-être que la taille du texte sur le tracé de gauche pourrait être un peu plus petite:

enter image description here

7
Ben

Vous pouvez également utiliser factoextra qui a également un backend ggplot2:

library("devtools")
install_github("kassambara/factoextra")
fit <- princomp(USArrests, cor=TRUE)
fviz_pca_biplot(fit)

enter image description here

Ou ggord:

install_github('fawda123/ggord')
library(ggord)
ggord(fit)+theme_grey()

enter image description here

Ou ggfortify:

devtools::install_github("sinhrks/ggfortify")
library(ggfortify)
ggplot2::autoplot(fit, label = TRUE, loadings.label = TRUE)

enter image description here

7
Tom Wenseleers

Cela permettra de tracer les états, mais pas les variables

fit.df <- as.data.frame(fit$scores)
fit.df$state <- rownames(fit.df)

library(ggplot2)
ggplot(data=fit.df,aes(x=Comp.1,y=Comp.2))+
  geom_text(aes(label=state,size=1,hjust=0,vjust=0))

enter image description here

4
Henry