J'ai le data.frame suivant
df = structure(list(HEADER = c("HOME_TRPM", "AWAY_TRPM", "HOME_TEAM","AWAY_TEAM"),
price = c("0.863104076023855", "-0.845186446996287","CHA", "NOP")),
.Names = c("HEADER", "price"), row.names = c(NA, 4L), class = "data.frame")
df
#> HEADER price
#> 1 HOME_TRPM 0.863104076023855
#> 2 AWAY_TRPM -0.845186446996287
#> 3 HOME_TEAM CHA
#> 4 AWAY_TEAM NOP
que je veux transposer. Comment puis-je le faire dans dplyr sans utiliser t ()? j'ai essayé
df %>% tidyr::spread(HEADER , price)
mais cela ne donne pas une structure plate, mais plutôt ceci:
structure(list(AWAY_TEAM = c(NA, NA, NA, "NOP"),
AWAY_TRPM = c(NA, "-0.845186446996287", NA, NA),
HOME_TEAM = c(NA, NA, "CHA", NA),
HOME_TRPM = c("0.863104076023855", NA, NA, NA)),
.Names = c("AWAY_TEAM", "AWAY_TRPM", "HOME_TEAM", "HOME_TRPM"),
class = "data.frame", row.names = c(NA, 4L))
Le data.frame résultant devrait être comme ceci:
structure(list(HOME_TRPM = "0.863104076023855",
AWAY_TRPM = "-0.845186446996287",
HOME_TEAM = "CHA",
AWAY_TEAM = "NOP"),
.Names = c("HOME_TRPM", "AWAY_TRPM", "HOME_TEAM", "AWAY_TEAM"),
row.names = c(NA, -1L), class = "data.frame"))
Je pense que vous voulez tidyr
plutôt que dplyr
:
library(tidyr)
library(dplyr)
df %>% mutate(group = 1) %>%
spread(HEADER, price)
group AWAY_TEAM AWAY_TRPM HOME_TEAM HOME_TRPM
1 1 NOP -0.845186446996287 CHA 0.863104076023855
En utilisant cela, vous pouvez spécifier vos groupes - et vous pouvez ajouter sur select(-group)
pour les supprimer ultérieurement.
Ils doivent avoir mis à jour tidyr depuis que cela a été posté car je pense que cela correspond à ce que vous demandiez à l'origine:
> library(dplyr)
> library(tidyr)
Warning message:
package ‘tidyr’ was built under R version 3.4.4
> df
HEADER price
1 HOME_TRPM 0.863104076023855
2 AWAY_TRPM -0.845186446996287
3 HOME_TEAM CHA
4 AWAY_TEAM NOP
> tidyr::spread(df, HEADER, price)
AWAY_TEAM AWAY_TRPM HOME_TEAM HOME_TRPM
1 NOP -0.845186446996287 CHA 0.863104076023855
Si vous avez un plus grand bloc de données, vous pouvez toujours rassembler et ensuite répandre:
> mdf <- data.frame(Things = c("Cookies","Cake","Knives","Kittens", "Politics"), Darkness = sample(1:5), Despair = sample(1:5), Defeat = sample(1:5))> mdf
Things Darkness Despair Defeat
1 Cookies 3 4 1
2 Cake 2 2 5
3 Knives 1 3 2
4 Kittens 5 5 3
5 Politics 4 1 4
> mdf %>% tidyr::gather(Idea, Warning_Level, Darkness:Defeat)
Things Idea Warning_Level
1 Cookies Darkness 3
2 Cake Darkness 2
3 Knives Darkness 1
4 Kittens Darkness 5
5 Politics Darkness 4
6 Cookies Despair 4
7 Cake Despair 2
8 Knives Despair 3
9 Kittens Despair 5
10 Politics Despair 1
11 Cookies Defeat 1
12 Cake Defeat 5
13 Knives Defeat 2
14 Kittens Defeat 3
15 Politics Defeat 4
> mdf %>% tidyr::gather(Idea, Warning_Level, Darkness:Defeat) %>% tidyr::spread(Things, Warning_Level)
Idea Cake Cookies Kittens Knives Politics
1 Darkness 2 3 5 1 4
2 Defeat 5 1 3 2 4
3 Despair 2 4 5 3 1