web-dev-qa-db-fra.com

Existe-t-il une expression régulière permettant de détecter une expression régulière valide?

Est-il possible de détecter une expression régulière valide avec une autre expression régulière? Si oui, veuillez donner un exemple de code ci-dessous.

681
psytek
/
^                                             # start of string
(                                             # first group start
  (?:
    (?:[^?+*{}()[\]\\|]+                      # literals and ^, $
     | \\.                                    # escaped characters
     | \[ (?: \^?\\. | \^[^\\] | [^\\^] )     # character classes
          (?: [^\]\\]+ | \\. )* \]
     | \( (?:\?[:=!]|\?<[=!]|\?>)? (?1)?? \)  # parenthesis, with recursive content
     | \(\? (?:R|[+-]?\d+) \)                 # recursive matching
     )
    (?: (?:[?+*]|\{\d+(?:,\d*)?\}) [?+]? )?   # quantifiers
  | \|                                        # alternative
  )*                                          # repeat content
)                                             # end first group
$                                             # end of string
/

Il s'agit d'une expression rationnelle récursive, qui n'est pas prise en charge par de nombreux moteurs d'expression régulière. Ceux basés sur PCRE devraient le supporter.

Sans espaces et commentaires:

/^((?:(?:[^?+*{}()[\]\\|]+|\\.|\[(?:\^?\\.|\^[^\\]|[^\\^])(?:[^\]\\]+|\\.)*\]|\((?:\?[:=!]|\?<[=!]|\?>)?(?1)??\)|\(\?(?:R|[+-]?\d+)\))(?:(?:[?+*]|\{\d+(?:,\d*)?\})[?+]?)?|\|)*)$/

.NET ne prend pas directement en charge la récursivité. (Les constructions (?1) et (?R).) La récursion devrait être convertie en comptage de groupes équilibrés:

^                                         # start of string
(?:
  (?: [^?+*{}()[\]\\|]+                   # literals and ^, $
   | \\.                                  # escaped characters
   | \[ (?: \^?\\. | \^[^\\] | [^\\^] )   # character classes
        (?: [^\]\\]+ | \\. )* \]
   | \( (?:\?[:=!]
         | \?<[=!]
         | \?>
         | \?<[^\W\d]\w*>
         | \?'[^\W\d]\w*'
         )?                               # opening of group
     (?<N>)                               #   increment counter
   | \)                                   # closing of group
     (?<-N>)                              #   decrement counter
   )
  (?: (?:[?+*]|\{\d+(?:,\d*)?\}) [?+]? )? # quantifiers
| \|                                      # alternative
)*                                        # repeat content
$                                         # end of string
(?(N)(?!))                                # fail if counter is non-zero.

Compacté:

^(?:(?:[^?+*{}()[\]\\|]+|\\.|\[(?:\^?\\.|\^[^\\]|[^\\^])(?:[^\]\\]+|\\.)*\]|\((?:\?[:=!]|\?<[=!]|\?>|\?<[^\W\d]\w*>|\?'[^\W\d]\w*')?(?<N>)|\)(?<-N>))(?:(?:[?+*]|\{\d+(?:,\d*)?\})[?+]?)?|\|)*$(?(N)(?!))
663
Markus Jarderot

Peu probable.

Évaluez-le dans un try..catch ou quelle que soit votre langue.

242
Dan

Non, si vous parlez strictement d'expressions régulières et n'incluez pas certaines implémentations d'expressions régulières qui sont en fait des grammaires sans contexte.

Il existe une limite aux expressions régulières qui rend impossible l'écriture d'une expression rationnelle qui correspond à toutes et à toutes les expressions rationnelles. Vous ne pouvez pas faire correspondre des implémentations telles que des accolades qui sont appariées. Les expressions rationnelles utilisent beaucoup de ces constructions, prenons [] comme exemple. Chaque fois qu'il y a un [il doit y avoir une correspondance]. Assez simple pour un regex "[. *]".

Ce qui le rend impossible pour les expressions rationnelles, c'est qu'elles peuvent être imbriquées. Comment pouvez-vous écrire une expression rationnelle qui correspond aux crochets imbriqués? La réponse est que vous ne pouvez pas sans une regex infiniment longue. Vous pouvez faire correspondre un nombre illimité de parens imbriqués par la force brutale, mais vous ne pouvez jamais faire correspondre un jeu de crochets arbitrairement longs.

Cette capacité est souvent appelée comptage (vous comptez la profondeur de l'imbrication). Une expression rationnelle, par définition, n'a pas la capacité de compter.

EDIT: A fini par écrire un article de blog à ce sujet: Limitations d’expressions régulières

160
JaredPar

Bonne question. Les vrais langages normaux ne peuvent pas décider arbitrairement de parenthèses bien formées imbriquées profondément. Par exemple, si votre alphabet contient '(' et ')', l'objectif est de décider si une chaîne de ceux-ci a une parenthèse correspondante bien formée. Comme il s'agit d'une exigence nécessaire pour les expressions régulières, la réponse est non.

Cependant, si vous desserrez l'exigence et ajoutez de la récursivité, vous pouvez probablement le faire. La raison en est que la récursion peut agir comme une "pile" vous permettant de "compter" la profondeur d'imbrication actuelle en appuyant sur cette pile.

Russ Cox a rédigé un excellent traité sur la mise en œuvre du moteur regex: La correspondance d'expressions régulières peut être simple et rapide

40

Bien qu'il soit parfaitement possible d'utiliser une regex récursive comme l'a écrit MizardX, ce type de choses est beaucoup plus utile comme analyseur syntaxique. Les expressions rationnelles étaient à l'origine destinées à être utilisées avec des langages normaux, être récursif ou avoir des groupes d'équilibrage n'est qu'un correctif.

Le langage qui définit les expressions rationnelles valides est en fait une grammaire sans contexte et vous devez utiliser un analyseur syntaxique approprié pour le gérer. Voici un exemple de projet universitaire visant à analyser des expressions rationnelles simples (sans la plupart des constructions). Il utilise JavaCC. Et oui, les commentaires sont en espagnol, bien que les noms de méthodes soient assez explicites.

SKIP :
{
    " "
|   "\r"
|   "\t"
|   "\n"
}
TOKEN : 
{
    < DIGITO: ["0" - "9"] >
|   < MAYUSCULA: ["A" - "Z"] >
|   < MINUSCULA: ["a" - "z"] >
|   < LAMBDA: "LAMBDA" >
|   < VACIO: "VACIO" >
}

IRegularExpression Expression() :
{
    IRegularExpression r; 
}
{
    r=Alternation() { return r; }
}

// Matchea disyunciones: ER | ER
IRegularExpression Alternation() :
{
    IRegularExpression r1 = null, r2 = null; 
}
{
    r1=Concatenation() ( "|" r2=Alternation() )?
    { 
        if (r2 == null) {
            return r1;
        } else {
            return createAlternation(r1,r2);
        } 
    }
}

// Matchea concatenaciones: ER.ER
IRegularExpression Concatenation() :
{
    IRegularExpression r1 = null, r2 = null; 
}
{
    r1=Repetition() ( "." r2=Repetition() { r1 = createConcatenation(r1,r2); } )*
    { return r1; }
}

// Matchea repeticiones: ER*
IRegularExpression Repetition() :
{
    IRegularExpression r; 
}
{
    r=Atom() ( "*" { r = createRepetition(r); } )*
    { return r; }
}

// Matchea regex atomicas: (ER), Terminal, Vacio, Lambda
IRegularExpression Atom() :
{
    String t;
    IRegularExpression r;
}
{
    ( "(" r=Expression() ")" {return r;}) 
    | t=Terminal() { return createTerminal(t); }
    | <LAMBDA> { return createLambda(); }
    | <VACIO> { return createEmpty(); }
}

// Matchea un terminal (digito o minuscula) y devuelve su valor
String Terminal() :
{
    Token t;
}
{
    ( t=<DIGITO> | t=<MINUSCULA> ) { return t.image; }
}
8

Vous pouvez soumettre la regex à preg_match qui renverra false si la regex n'est pas valide. N'oubliez pas d'utiliser le '@' pour supprimer les messages d'erreur:

@preg_match($regexToTest, '');
  • Renverra 1 si la regex est '//'.
  • Reviendra 0 si la regex est ok.
  • Reviendra faux sinon.

L’exemple suivant de Paul McGuire, originaire du wiki pyparsing, mais maintenant disponible uniquement via Wayback Machine , donne une grammaire pour analyser un peu les expressions rationnelles, dans le but de renvoyer l'ensemble des chaînes correspondantes. En tant que tel, il rejette ceux qui incluent des termes de répétition sans limites, comme '+' et '*'. Mais cela devrait vous donner une idée sur la façon de structurer un analyseur qui traiterait les re.

# 
# invRegex.py
#
# Copyright 2008, Paul McGuire
#
# pyparsing script to expand a regular expression into all possible matching strings
# Supports:
# - {n} and {m,n} repetition, but not unbounded + or * repetition
# - ? optional elements
# - [] character ranges
# - () grouping
# - | alternation
#
__all__ = ["count","invert"]

from pyparsing import (Literal, oneOf, printables, ParserElement, Combine, 
    SkipTo, operatorPrecedence, ParseFatalException, Word, nums, opAssoc,
    Suppress, ParseResults, srange)

class CharacterRangeEmitter(object):
    def __init__(self,chars):
        # remove duplicate chars in character range, but preserve original order
        seen = set()
        self.charset = "".join( seen.add(c) or c for c in chars if c not in seen )
    def __str__(self):
        return '['+self.charset+']'
    def __repr__(self):
        return '['+self.charset+']'
    def makeGenerator(self):
        def genChars():
            for s in self.charset:
                yield s
        return genChars

class OptionalEmitter(object):
    def __init__(self,expr):
        self.expr = expr
    def makeGenerator(self):
        def optionalGen():
            yield ""
            for s in self.expr.makeGenerator()():
                yield s
        return optionalGen

class DotEmitter(object):
    def makeGenerator(self):
        def dotGen():
            for c in printables:
                yield c
        return dotGen

class GroupEmitter(object):
    def __init__(self,exprs):
        self.exprs = ParseResults(exprs)
    def makeGenerator(self):
        def groupGen():
            def recurseList(elist):
                if len(elist)==1:
                    for s in elist[0].makeGenerator()():
                        yield s
                else:
                    for s in elist[0].makeGenerator()():
                        for s2 in recurseList(elist[1:]):
                            yield s + s2
            if self.exprs:
                for s in recurseList(self.exprs):
                    yield s
        return groupGen

class AlternativeEmitter(object):
    def __init__(self,exprs):
        self.exprs = exprs
    def makeGenerator(self):
        def altGen():
            for e in self.exprs:
                for s in e.makeGenerator()():
                    yield s
        return altGen

class LiteralEmitter(object):
    def __init__(self,lit):
        self.lit = lit
    def __str__(self):
        return "Lit:"+self.lit
    def __repr__(self):
        return "Lit:"+self.lit
    def makeGenerator(self):
        def litGen():
            yield self.lit
        return litGen

def handleRange(toks):
    return CharacterRangeEmitter(srange(toks[0]))

def handleRepetition(toks):
    toks=toks[0]
    if toks[1] in "*+":
        raise ParseFatalException("",0,"unbounded repetition operators not supported")
    if toks[1] == "?":
        return OptionalEmitter(toks[0])
    if "count" in toks:
        return GroupEmitter([toks[0]] * int(toks.count))
    if "minCount" in toks:
        mincount = int(toks.minCount)
        maxcount = int(toks.maxCount)
        optcount = maxcount - mincount
        if optcount:
            opt = OptionalEmitter(toks[0])
            for i in range(1,optcount):
                opt = OptionalEmitter(GroupEmitter([toks[0],opt]))
            return GroupEmitter([toks[0]] * mincount + [opt])
        else:
            return [toks[0]] * mincount

def handleLiteral(toks):
    lit = ""
    for t in toks:
        if t[0] == "\\":
            if t[1] == "t":
                lit += '\t'
            else:
                lit += t[1]
        else:
            lit += t
    return LiteralEmitter(lit)    

def handleMacro(toks):
    macroChar = toks[0][1]
    if macroChar == "d":
        return CharacterRangeEmitter("0123456789")
    Elif macroChar == "w":
        return CharacterRangeEmitter(srange("[A-Za-z0-9_]"))
    Elif macroChar == "s":
        return LiteralEmitter(" ")
    else:
        raise ParseFatalException("",0,"unsupported macro character (" + macroChar + ")")

def handleSequence(toks):
    return GroupEmitter(toks[0])

def handleDot():
    return CharacterRangeEmitter(printables)

def handleAlternative(toks):
    return AlternativeEmitter(toks[0])


_parser = None
def parser():
    global _parser
    if _parser is None:
        ParserElement.setDefaultWhitespaceChars("")
        lbrack,rbrack,lbrace,rbrace,lparen,rparen = map(Literal,"[]{}()")

        reMacro = Combine("\\" + oneOf(list("dws")))
        escapedChar = ~reMacro + Combine("\\" + oneOf(list(printables)))
        reLiteralChar = "".join(c for c in printables if c not in r"\[]{}().*?+|") + " \t"

        reRange = Combine(lbrack + SkipTo(rbrack,ignore=escapedChar) + rbrack)
        reLiteral = ( escapedChar | oneOf(list(reLiteralChar)) )
        reDot = Literal(".")
        repetition = (
            ( lbrace + Word(nums).setResultsName("count") + rbrace ) |
            ( lbrace + Word(nums).setResultsName("minCount")+","+ Word(nums).setResultsName("maxCount") + rbrace ) |
            oneOf(list("*+?")) 
            )

        reRange.setParseAction(handleRange)
        reLiteral.setParseAction(handleLiteral)
        reMacro.setParseAction(handleMacro)
        reDot.setParseAction(handleDot)

        reTerm = ( reLiteral | reRange | reMacro | reDot )
        reExpr = operatorPrecedence( reTerm,
            [
            (repetition, 1, opAssoc.LEFT, handleRepetition),
            (None, 2, opAssoc.LEFT, handleSequence),
            (Suppress('|'), 2, opAssoc.LEFT, handleAlternative),
            ]
            )
        _parser = reExpr

    return _parser

def count(gen):
    """Simple function to count the number of elements returned by a generator."""
    i = 0
    for s in gen:
        i += 1
    return i

def invert(regex):
    """Call this routine as a generator to return all the strings that
       match the input regular expression.
           for s in invert("[A-Z]{3}\d{3}"):
               print s
    """
    invReGenerator = GroupEmitter(parser().parseString(regex)).makeGenerator()
    return invReGenerator()

def main():
    tests = r"""
    [A-EA]
    [A-D]*
    [A-D]{3}
    X[A-C]{3}Y
    X[A-C]{3}\(
    X\d
    foobar\d\d
    foobar{2}
    foobar{2,9}
    fooba[rz]{2}
    (foobar){2}
    ([01]\d)|(2[0-5])
    ([01]\d\d)|(2[0-4]\d)|(25[0-5])
    [A-C]{1,2}
    [A-C]{0,3}
    [A-C]\s[A-C]\s[A-C]
    [A-C]\s?[A-C][A-C]
    [A-C]\s([A-C][A-C])
    [A-C]\s([A-C][A-C])?
    [A-C]{2}\d{2}
    @|TH[12]
    @(@|TH[12])?
    @(@|TH[12]|AL[12]|SP[123]|TB(1[0-9]?|20?|[3-9]))?
    @(@|TH[12]|AL[12]|SP[123]|TB(1[0-9]?|20?|[3-9])|OH(1[0-9]?|2[0-9]?|30?|[4-9]))?
    (([ECMP]|HA|AK)[SD]|HS)T
    [A-CV]{2}
    A[cglmrstu]|B[aehikr]?|C[adeflmorsu]?|D[bsy]|E[rsu]|F[emr]?|G[ade]|H[efgos]?|I[nr]?|Kr?|L[airu]|M[dgnot]|N[abdeiop]?|Os?|P[abdmortu]?|R[abefghnu]|S[bcegimnr]?|T[abcehilm]|Uu[bhopqst]|U|V|W|Xe|Yb?|Z[nr]
    (a|b)|(x|y)
    (a|b) (x|y)
    """.split('\n')

    for t in tests:
        t = t.strip()
        if not t: continue
        print '-'*50
        print t
        try:
            print count(invert(t))
            for s in invert(t):
                print s
        except ParseFatalException,pfe:
            print pfe.msg
            print
            continue
        print

if __== "__main__":
    main()
4
PaulMcG

Non, si vous utilisez des expressions régulières standard.

La raison en est que vous ne pouvez pas satisfaire le lemme de pompage pour les langues normales. Le lemme de pompage indique qu'une chaîne appartenant à la langue L est régulière s'il existe un nombre N tel que, après avoir divisé la chaîne en 3 chaînes xyz telles que | x |> = 1 && | xy | <= N, vous pouvez répéter y autant de fois que vous le souhaitez et toute la chaîne appartiendra toujours à L.

Une conséquence du lemme de pompage est que vous ne pouvez pas avoir de chaînes régulières sous la forme a^Nb^Mc^N, c'est-à-dire deux sous-chaînes de même longueur séparées par une autre chaîne. De quelque manière que vous divisiez de telles chaînes en x y et z, vous ne pouvez pas "pomper" y sans obtenir une chaîne avec un nombre différent de "a" et "c", laissant ainsi la langue d'origine. C'est le cas, par exemple, des parenthèses dans les expressions régulières.

1
Davide Visentin