J'ai un dataframe (spark):
id value
3 0
3 1
3 0
4 1
4 0
4 0
Je veux créer un nouveau dataframe:
3 0
3 1
4 1
Nécessité de supprimer toutes les lignes après 1(value) pour chaque ID.J'ai essayé avec les fonctions de fenêtre dans spark dateframe (Scala). Mais impossible de trouver une solution. On dirait que je vais dans la mauvaise direction.
Je cherche une solution dans Scala.Merci
Sortie utilisant monotonically_increasing_id
scala> val data = Seq((3,0),(3,1),(3,0),(4,1),(4,0),(4,0)).toDF("id", "value")
data: org.Apache.spark.sql.DataFrame = [id: int, value: int]
scala> val minIdx = dataWithIndex.filter($"value" === 1).groupBy($"id").agg(min($"idx")).toDF("r_id", "min_idx")
minIdx: org.Apache.spark.sql.DataFrame = [r_id: int, min_idx: bigint]
scala> dataWithIndex.join(minIdx,($"r_id" === $"id") && ($"idx" <= $"min_idx")).select($"id", $"value").show
+---+-----+
| id|value|
+---+-----+
| 3| 0|
| 3| 1|
| 4| 1|
+---+-----+
La solution ne fonctionnera pas si nous effectuons une transformation triée dans le cadre de données d'origine. Cette fois, le monotonically_increasing_id () est généré sur la base de l'original DF plutôt que sur le fichier DF.I trié qui manquait auparavant.
Toutes les suggestions sont les bienvenues.
Une solution consiste à utiliser monotonically_increasing_id()
et une auto-jointure:
val data = Seq((3,0),(3,1),(3,0),(4,1),(4,0),(4,0)).toDF("id", "value")
data.show
+---+-----+
| id|value|
+---+-----+
| 3| 0|
| 3| 1|
| 3| 0|
| 4| 1|
| 4| 0|
| 4| 0|
+---+-----+
Maintenant, nous générons une colonne nommée idx
avec une Long
croissante:
val dataWithIndex = data.withColumn("idx", monotonically_increasing_id())
// dataWithIndex.cache()
Nous obtenons maintenant la min(idx)
pour chaque id
où value = 1
:
val minIdx = dataWithIndex
.filter($"value" === 1)
.groupBy($"id")
.agg(min($"idx"))
.toDF("r_id", "min_idx")
Maintenant, nous joignons la min(idx)
à la DataFrame
originale:
dataWithIndex.join(
minIdx,
($"r_id" === $"id") && ($"idx" <= $"min_idx")
).select($"id", $"value").show
+---+-----+
| id|value|
+---+-----+
| 3| 0|
| 3| 1|
| 4| 1|
+---+-----+
Remarque: monotonically_increasing_id()
génère sa valeur en fonction de la partition de la ligne. Cette valeur peut changer chaque fois que dataWithIndex
est réévalué. Dans mon code ci-dessus, en raison d'une évaluation paresseuse, ce n'est que lorsque j'appelle la dernière variable (show
) que monotonically_increasing_id()
est évalué.
Si vous voulez forcer la valeur à rester la même, par exemple pour pouvoir utiliser show
afin d'évaluer les étapes ci-dessus, décommentez cette ligne ci-dessus:
// dataWithIndex.cache()
Bonjour, j'ai trouvé la solution en utilisant Window et Self Join.
val data = Seq((3,0,2),(3,1,3),(3,0,1),(4,1,6),(4,0,5),(4,0,4),(1,0,7),(1,1,8),(1,0,9),(2,1,10),(2,0,11),(2,0,12)).toDF("id", "value","sorted")
data.show
scala> data.show
+---+-----+------+
| id|value|sorted|
+---+-----+------+
| 3| 0| 2|
| 3| 1| 3|
| 3| 0| 1|
| 4| 1| 6|
| 4| 0| 5|
| 4| 0| 4|
| 1| 0| 7|
| 1| 1| 8|
| 1| 0| 9|
| 2| 1| 10|
| 2| 0| 11|
| 2| 0| 12|
+---+-----+------+
val sort_df=data.sort($"sorted")
scala> sort_df.show
+---+-----+------+
| id|value|sorted|
+---+-----+------+
| 3| 0| 1|
| 3| 0| 2|
| 3| 1| 3|
| 4| 0| 4|
| 4| 0| 5|
| 4| 1| 6|
| 1| 0| 7|
| 1| 1| 8|
| 1| 0| 9|
| 2| 1| 10|
| 2| 0| 11|
| 2| 0| 12|
+---+-----+------+
var window=Window.partitionBy("id").orderBy("$sorted")
val sort_idx=sort_df.select($"*",rowNumber.over(window).as("count_index"))
val minIdx=sort_idx.filter($"value"===1).groupBy("id").agg(min("count_index")).toDF("idx","min_idx")
val result_id=sort_idx.join(minIdx,($"id"===$"idx") &&($"count_index" <= $"min_idx"))
result_id.show
+---+-----+------+-----------+---+-------+
| id|value|sorted|count_index|idx|min_idx|
+---+-----+------+-----------+---+-------+
| 1| 0| 7| 1| 1| 2|
| 1| 1| 8| 2| 1| 2|
| 2| 1| 10| 1| 2| 1|
| 3| 0| 1| 1| 3| 3|
| 3| 0| 2| 2| 3| 3|
| 3| 1| 3| 3| 3| 3|
| 4| 0| 4| 1| 4| 3|
| 4| 0| 5| 2| 4| 3|
| 4| 1| 6| 3| 4| 3|
+---+-----+------+-----------+---+-------+
Toujours à la recherche de solutions plus optimisées.Merci
use isin method and filter as below:
val data = Seq((3,0,2),(3,1,3),(3,0,1),(4,1,6),(4,0,5),(4,0,4),(1,0,7),(1,1,8),(1,0,9),(2,1,10),(2,0,11),(2,0,12)).toDF("id", "value","sorted")
val idFilter = List(1, 2)
data.filter($"id".isin(idFilter:_*)).show
+---+-----+------+
| id|value|sorted|
+---+-----+------+
| 1| 0| 7|
| 1| 1| 8|
| 1| 0| 9|
| 2| 1| 10|
| 2| 0| 11|
| 2| 0| 12|
+---+-----+------+
Ex: filter based on val
val valFilter = List(0)
data.filter($"value".isin(valFilter:_*)).show
+---+-----+------+
| id|value|sorted|
+---+-----+------+
| 3| 0| 2|
| 3| 0| 1|
| 4| 0| 5|
| 4| 0| 4|
| 1| 0| 7|
| 1| 0| 9|
| 2| 0| 11|
| 2| 0| 12|
+---+-----+------+
Vous pouvez simplement utiliser groupBy
comme ceci
val df2 = df1.groupBy("id","value").count().select("id","value")
Ici votre df1
est
id value
3 0
3 1
3 0
4 1
4 0
4 0
Et le dataframe résultant est df2
qui est votre sortie attendue comme ceci
id value
3 0
3 1
4 1
4 0